Эфирный двигатель принцип работы

Двигатель – сердце электростанции

Содержание:

  1. 1. Устройство и принцип работы
  2. 2. Отличия бензинового и дизельного двигателей
  3. 3. Какие марки двигателей устанавливают в генераторах?

Часто при выборе установки для автономного электроснабжения покупатели все свое внимание уделяют основным техническим характеристикам, забывая о самом главном – двигателе. А недостаток информации об этом является одним из наиболее часто встречающихся «подводных камней» при покупке электростанции. Как можно узнать, качественный или некачественный двигатель установлен в выбранной Вами модели? Ведь скупые цифры в характеристиках мало чего скажут. Чтобы не ошибиться при выборе, лучше разобраться в данном вопросе заранее.

Устройство и принцип работы

В автономных электростанциях, как и в автомобилях, устанавливаются двигатели внутреннего сгорания. За счет сжигания топлива вырабатывается энергия, которая преобразуется в механическую и приводит в действие генератор, который вырабатывает электрический ток. В разных типах двигателей процесс работы происходит по-своему. В связи с этим различают:

  • Двухтактный – в таком двигателе рабочий цикл происходит за два такта. То есть, при совершении одного оборота коленвала за первый такт осуществляется выпуск топливной смеси и ее сжатие в цилиндре, за второй такт происходит воспламенение сжатой смеси, в результате чего повышается давление и температура. Расширение газов приводит в движение поршень, затем происходит выпуск отработанных газов и продувка. Преимуществом двухтактного двигателя является компактность, так как отсутствует система клапанов и распределительного вала. Для работы приходится подготавливать топливную смесь из масла и бензина в строгих пропорциях.
  • Четырехтактный – основные рабочие процессы происходят за 4 такта: сначала осуществляется выпуск топливной смеси, затем ее сжатие (и повышение температуры), после этого – сгорание и расширение (воздушная смесь поджигается и расширяется, толкая поршень), четвертым тактом является выпуск отработанных газов, выталкиваемых движущимся поршнем. В отличие от двухтактного, в четырехтактном двигателе не такая сложная выхлопная система, а при сгорании топлива получается более чистый выхлоп.

Так как двухтактные двигатели очень компактны, их устанавливают в бензогенераторах невысокой мощности (до 1 кВт), что позволяет сделать устройства малогабаритными и легкими. Для более мощных установок используются четырехтактные двигатели, которые гораздо проще в эксплуатации: не требуется предварительного приготовления масляно-топливной смеси. К тому же, обеспечивается более тихая работа и экономичный расход топлива.

Важно знать! При выборе генератора Вы можете столкнуться с такой аббревиатурой в названии двигателя как «OHV». В переводе с английского overhead-valve, она означает «верхний клапан». Такое расположение клапанов характерно для четырехтактных двигателей. Это способствует меньшему расходу топлива и масла. Гораздо реже встречается маркировка «ОНС» (верхнее расположение распределительного вала). Эта новинка, позаимствованная из автомобилестроения, применяется в двигателях Robin Subaru. Такая система отличается пониженным износом деталей, более экономичным расходом топлива и увеличенной производительностью.

Кроме конструктивных отличий, необходимо учесть еще и вид используемого топлива. Одни генераторы оснащаются бензиновыми двигателями, другие – дизельными. В данном случае выбор нужно делать не только из-за цен на топливо, но и из предполагаемых условий эксплуатации.

Отличия бензинового и дизельного двигателей

Бензиновые двигатели внутреннего сгорания приводятся в действие от воспламенения топливно-воздушной смеси при возникновении искры. А в дизельных воспламенение происходит от сжатия, степень которого может составлять от 14:1 до 24:1, и в течение рабочего цикла топливо в цилиндре сгорает практически полностью, передавая энергию для движения поршня. Дизельные двигатели менее чувствительны к детонации, по сравнению с бензиновыми, и отличаются более экономичным потреблением топлива. Но они имеют и высокую стоимость, и, следовательно, генераторы с дизельными двигателями стоят дороже, чем бензиновые аналоги. Их применение будет целесообразным, если необходимо обеспечить круглосуточное электроснабжение здания или подавать электроэнергию к технике в течение рабочей смены.

Дизельные двигатели большой мощности (свыше 10 кВт) имеют систему жидкостного охлаждения, которая предотвращает перегрев и исключает остановку при интенсивных нагрузках. Стационарные электростанции с такими системами могут работать непрерывно в течение нескольких месяцев!

Если же Вы планируете использовать генератор не так часто, например, во время загородных поездок, на даче или в гараже, а также в качестве резервного источника электропитания во время нечастых отключений электроэнергии, подойдет модель, оснащенная бензиновым двигателем. Одним из главных его преимуществ является легкий запуск при минусовой температуре.
На эксплуатационные характеристики также влияет качество сборки и используемых деталей двигателя. Поэтому очень важно обратить внимание на фирму-производителя двигателя, которым оснащена электростанция.

Какие марки двигателей устанавливают в генераторах?

Одни производители используют двигатели собственного производства (Hyundai, FUBAG), другие закупают детали и осуществляют сборку на собственном предприятии и выпускают более дешевые аналоги фирменных двигателей, например Ranger. Но наибольшей популярностью пользуются электростанции, в которых установлены двигатели у всемирно известных производителей автомобилей. Доверие заслужили следующие марки: Honda, MITSUBISHI, Robin (Subaru), Briggs&Straton, Kohler, Yanmar Lamborgini. Такими двигателями оснащаются бензиновые и дизель-генераторы SDMO, Makita, Telwin, Hitachi, Wacker Neuson и многие другие. Причем, один производитель может использовать в разных сериях оборудования как свои, так и двигатели других фирм, в зависимости от класса установок.

Одним из лидирующих производителей дизельных двигателей является американская компания John Deere, которая имеет более чем 85-летний опыт работы в этой сфере. Ее заводы находятся в Европе, Северной и Латинской Америке. Двигатели этой марки устанавливаются во внедорожниках, сельскохозяйственной технике, компрессорах и генераторах – более 700 производителей доверяют John Deere. Такие двигатели рассчитаны на интенсивные нагрузки и непрерывную эксплуатацию в течение длительного времени. Они работают даже в неблагоприятных условиях, например, при некачественном топливе, и не требуют частого технического обслуживания. Чаще всего двигатели John Deere устанавливаются в стационарных электростанциях мощностью от 20 до 100 кВт (например, SDMO).

Преимущество фирменных двигателей в том, что заявленные характеристики соответствуют реальным. Важным показателем является степень сжатия (чем выше ее значение, тем больше топливная экономичность двигателя). К примеру, заявлена степень сжатия 8, в некачественном двигателе она может быть не более 7,6. То же самое с температурой выхлопных газов и температурой масла, эти значения не должны превышать 450 и 115 градусов соответственно. Что за собой влечет нарушение этих норм? Во время эксплуатации при максимальной нагрузке через 10-15 минут двигатель начнет «задыхаться». К тому же, генератор может не выдержать пиковых нагрузок во время запуска мощного оборудования, например, насоса. Фирменные двигатели имеют достаточный запас мощности и не заглохнут при увеличении нагрузки потребителей.

Читать еще:  Выключение стартера при запуске двигателя

Оригинальная продукция имеет моторесурс, превышающий более чем в 5 раз моторесурс двигателей-копий, следовательно, и поломки случаются гораздо реже. Но стоимость электростанций, оснащенных фирменными движками, на порядок выше китайских аналогов. Если оборудование необходимо Вам для ежедневного использования, то рациональнее будет не скупиться при его покупке, тем самым сэкономив на эксплуатации и обслуживании. В случае, когда генератор будет использоваться не интенсивно, например, в быту или на даче, можно выбрать более доступный по цене вариант.

Корень сайта

Экспорт родом из Янино

Статья, опубликованная в газете » Петербургский дневник «, ноябрь, 2016 г.

Комфорт и безопасность

Статья, опубликованная в журнале » 4×4 Club «, сентябрь, 2016 г.

Трекер для умного мониторинга

Заметка, опубликованная в журнале » 4×4 Club «, июль-август, 2016 г.

Какой IQ у вашего автомобиля?

Статья, опубликованная в журнале » 4×4 Club «, июль-август, 2016 г.

Российский рынок охранных систем

Статья, опубликованная в журнале «Автоинструкция», июнь, 2016 г.

Мотосторож

Статья, опубликованная в журнале «АВТОМИР», апрель, 2016 г.

Любой каприз

Заметка, опубликованная в журнале «АВТОМИР», апрель, 2016 г.

Настоящий кошмар угонщика

Статья, опубликованная в журнале «АВТОСОЮЗ», апрель, 2016 г.

Умная защита от электронного взлома

Статья, опубликованная в журнале «Авторынок Чувашии», апрель, 2016 г.

StarLine приглашает на модернизацию

Статья, опубликованная в журнале «Авторынок Чувашии», апрель, 2016 г.

StarLine Тушино — фирменный установочный центр

Москва, ул. Василия Петушкова, д.3, к.3, стр.1 (4-й этаж)
с 10:00 до 21:00, пн-вс, без выходных
+7 (495) 999-90-55; +7 (916) 358-10-10
info@starline-install.ru
starline-install.ru

StarLine — фирменный установочный центр

Санкт-Петербург, ул. Генерала Хрулева д.14
с 9:00 до 21:00, пн-вс, без выходных
+7 (812) 385-57-79
spb@starline-install.ru
starline-install.ru

StarLine Ленинский — фирменный установочный центр

Москва, ул. Вавилова, д. 13А
Вт — Сб: с 10:00 до 21:00; Выходные: Вс и Пн
+7 (495) 999-90-55; +7-916-354-80-80
info@starline-install.ru
starline-install.ru

StarLine — фирменный установочный центр

Челябинск, ул. Кожзаводская, 16
понедельник-пятница с 9:00 до 18:00, суббота с 10:00 до 14:00, воскресенье — выходной.
(351) 230-01-14
chlb@starline-install.ru

StarLine — фирменный установочный центр

Смоленск, ул. Свердлова, д.47
Ежедневно с 9:00 до 21:00
+7(4812)56-79-97 +7(900) 223-55-55
smolensk@starline-install.ru

StarLine — фирменный установочный центр

Екатеринбург, ул. Готвальда, 12а
Пн.- Вс.: с 9:00 до 18:00
+7 (343) 245-93-13
ekaterinburg@starline-install.ru

StarLine — фирменный установочный центр

Томск, ул. Больничная, 6
Пн. — Вс.: с 09:00 до 18:00
(3822) 34-82-82

Двигатель

Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую работу. Термин мотор заимствован в первой половине XIX века из немецкого языка [1] (нем. Motor — «двигатель», от лат. mōtor — «приводящий в движение») и преимущественно им называют электрические двигатели и двигатели внутреннего сгорания [2] .

Двигатели подразделяют на первичные и вторичные. К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, а ко вторичным — преобразующие энергию, выработанную или накопленную другими источниками.

К первичным двигателям (ПД) относятся ветряное колесо, использующее силу ветра, водяное колесо и гиревой механизм — их приводит в действие сила гравитации (падающая вода и сила притяжения), тепловые двигатели — в них химическая энергия топлива или ядерная энергия преобразуются в другие виды энергии. Ко вторичным двигателям (ВД) относятся электрические, пневматические и гидравлические двигатели.

Содержание

  • 1 Первичные двигатели
    • 1.1 Паровые машины
    • 1.2 Двигатель Стирлинга
    • 1.3 Паровая турбина
    • 1.4 Двигатель внутреннего сгорания
  • 2 Вторичные двигатели
    • 2.1 Электродвигатели
    • 2.2 Пневмодвигатели и гидромашины
  • 3 Классификации
    • 3.1 По источнику энергии
    • 3.2 По типам движения
    • 3.3 По устройству
      • 3.3.1 Реактивные двигатели
      • 3.3.2 Ракетные двигатели
    • 3.4 По применению
  • 4 Производство
  • 5 Переносные значения
  • 6 См. также
  • 7 Примечания
  • 8 Ссылки

Первичные двигатели [ править | править код ]

Первыми первичными двигателями стали парус и водяное колесо. Парусом пользуются уже более 7 тысяч лет.

Водяное колесо — норию широко применяли для оросительных систем в странах Древнего мира: Египте, Китае, Индии. Водяные и ветряные колёса широко использовались в Европе в средних веках как основная энергетическая база мануфактурного производства.

Паровые машины [ править | править код ]

В середине XVII века были сделаны первые попытки перехода к машинному производству, потребовавшие создания двигателей, не зависящих от местных источников энергии (воды, ветра и прочего). Первым двигателем, в котором использовалось тепловая энергия химического топлива, стала пароатмосферная машина, изготовленная по проектам французского физика Дени Папена и английского механика Томаса Севери. Эта машина была лишена возможности непосредственно служить механическим приводом, к ней «прилагалось в комплект» водяное мельничное колесо (по-современному говоря, гидротурбина), которое вращала вода, выжимаемая паром из парового котла в резервуар водонапорной башни. Котел то подогревался паром, то охлаждался водой: машина действовала периодически.

В 1763 году русский механик Иван Иванович Ползунов изготовил по собственному проекту стационарную паровую машину непрерывного действия. В ней были сдвоены два цилиндра, поочерёдно заполнявшиеся паром, и также подающими воду на башню, но — постоянно.

К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, названную универсальным паровым двигателем. Уатт с детства работал подручным на машине конструкции Севери. В его задачу входило постоянно переключать краны подачи пара и воды на котел. Эта однообразная работа изрядно надоела изобретателю и побудила изобрести как поршень двойного хода, так и автоматическую клапанную коробку (потом и центробежный предохранитель). В машине был предусмотрен в цилиндре жесткий поршень, по обе стороны которого поочередно подавался пар. Все происходило в автоматическом режиме и непрерывно. Поршень вращал через кривошипно—шатунную систему маховик, обеспечивающий плавность хода. Паровая машина могла теперь стать приводом различных механизмов и перестала быть привязана к водонапорной башне. Элементы, придуманные Уаттом, входили в той или иной форме во все паровые машины. Паровые машины совершенствовали и применяли для решения различных технических задач: привода станков, судов, экипажей для перевозки людей по дорогам, локомотивов на железных дорогах. К 1880 году суммарная мощность всех работавших паровых машин превысила 26 млн кВт (35 млн л. с.).

Читать еще:  В чем причина остановки двигателя на ходу

Двигатель Стирлинга [ править | править код ]

В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически — это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.

Паровая турбина [ править | править код ]

Рисунки, изображающие крыльчатое колесо, вращающееся под воздействием потока пара, известны с древних времён. Однако практические конструкции паровой турбины были созданы лишь во второй половине XIX века, благодаря развитию конструкционных материалов, позволивших достичь высоких скоростей вращения.

В 1889 году шведский инженер Карл Густав де Лаваль предложил использовать расширяющееся сопло и быстроходную турбину (до 32000 об/мин), а, независимо от него, ещё в 1884 году англичанин Чарлз Алджернон Парсонс изобрёл первую пригодную для промышленного применения реактивную турбину (более тихоходную), способную вращать судовой винт. Паровые турбины стали применять на морских судах, а с начала XX века на электростанциях. В 1960-х годах их мощность превысила 1000 МВт в одном агрегате.

Двигатель внутреннего сгорания [ править | править код ]

Проект первого двигателя внутреннего сгорания (ДВС) принадлежит известному изобретателю часового анкера Христиану Гюйгенсу и предложен ещё в XVII веке. Интересно, что в качестве топлива предполагалось использовать порох, а сама идея была подсказана артиллерийским орудием. Все попытки Дени Папена (упомянутого выше, как создатель первой паровой машины) построить машину на таком принципе, успехом не увенчались. Первый надёжно работавший ДВС сконструировал в 1860 году французский инженер Этьен Ленуар. Двигатель Ленуара работал на газовом топливе. Спустя 16 лет немецкий конструктор Николас Отто создал более совершенный 4-тактный газовый двигатель. В этом же 1876 году шотландский инженер Дугальд Кларк испытал первый удачный 2-тактный двигатель. Совершенствованием ДВС занимались многие инженеры и механики. Так, в 1883 году немецкий инженер Карл Бенц изготовил использованный им в дальнейшем 2-тактный ДВС. В 1897 году его соотечественник и тоже инженер Рудольф Дизель предложил ДВС с воспламенением рабочей смеси в цилиндре от сжатия воздуха, названный впоследствии дизелем.

В XX веке ДВС стал основным двигателем в автомобильном транспорте. В 1970-х годах почти 80 % суммарной мощности всех существовавших ДВС приходилось на транспортные машины (автомобили, трактора и прочее). Параллельно шло совершенствование гидротурбин, применявшихся на гидроэлектростанциях. Их мощность в 1970-х годах превысила 600 МВт.

В первой половине XX века создали новые типы первичных двигателей: газовые турбины, реактивные двигатели, а в 1950-х и ядерные силовые установки. Процесс совершенствования и изобретения первичных двигателей продолжается.

Вторичные двигатели [ править | править код ]

Электродвигатели [ править | править код ]

В 1834 году русский учёный Борис Семёнович Якоби (так писалось его имя в русской транскрипции) создал первый пригодный для практического использования электродвигатель постоянного тока.

В 1888 году сербский студент и будущий великий изобретатель Никола Тесла высказал принцип построения двухфазных двигателей переменного тока, а год спустя русский инженер Михаил Осипович Доливо-Добровольский создал первый в мире 3-фазный асинхронный электродвигатель, ставший наиболее распространённой электрической машиной.

Пневмодвигатели и гидромашины [ править | править код ]

Пневмодвигатели и гидромашины, соответственно, работают от сетей (баллонов) высокого давления воздуха или жидкости преобразуя гидравлическую (пневматическую) энергию насосов. Их широко применяют в качестве исполнительных механизмов в различных устройствах и системах. Так, созданы пневмолокомотивы (особенно пригодны для работ во взрывоопасных условиях, например в шахтах, где тепловые двигатели не применимы из-за температурных условий, а электрические — из-за искр при коммутации), с помощью гидромашин осуществляется привод гусениц в некоторых типах тракторов и танков, перемещение рабочих органов бульдозеров и экскаваторов. Всё разнообразнее конструкции экологически чистых городских автомобилях на пневмоприводах, предлагаемых инженерами разных стран. Вторичные двигатели играют большую роль в технике, однако их мощность относительно невелика. Их также широко применяют и в миниатюрных и сверхминиатюрных устройствах.

Классификации [ править | править код ]

По источнику энергии [ править | править код ]

Двигатели могут использовать следующие типы источников энергии:

  • электрические;
    • постоянного тока (электродвигатель постоянного тока);
    • переменного тока (синхронные и асинхронные);
  • электростатические;
  • химические;
  • ядерные;
  • гравитационные;
  • пневматические;
  • гидравлические;
  • лазерные.

По типам движения [ править | править код ]

Получаемую энергию двигатели могут преобразовывать к следующим типам движения:

  • вращательное движение твёрдых тел;
  • поступательное движение твёрдых тел;
  • возвратно-поступательное движение твёрдых тел;
  • движение реактивной струи;
  • другие виды движения.

Электродвигатели, обеспечивающие поступательное и/или возвратно-поступательное движение твёрдого тела:

  • линейные;
  • индукционные;
  • пьезоэлектрические.
  • ионные двигатели;
  • стационарные плазменные двигатели;
  • двигатели с анодным слоем;
  • радиоионизационные двигатели;
  • коллоидные двигатели;
  • электромагнитные двигатели и др.

По устройству [ править | править код ]

Двигатели внешнего сгорания — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела:

Двигатели внутреннего сгорания — класс двигателей, у которых образование рабочего тела и подвод к нему тепла объединены в одном процессе и происходят в одном технологическом объёме:

  • двигатели с герметично запираемыми рабочими камерами (поршневые и роторные ДВС);
  • двигатели с камерами, откуда рабочее тело имеет свободный выход в атмосферу (газовые турбины).

По типу движения главного рабочего органа ДВС с запираемыми рабочими камерами делятся на ДВС с возвратно-поступательным движением (поршневые) (делятся на тронковые и крецкопфные) и ДВС с вращательным движением (роторные), которые по видам вращательного движения делятся на 7 различных типов конструкций. По типу поджига рабочей смеси ДВС с герметично запираемыми камерами делятся на двигатели с принудительным электрическим поджиганием (калильным или искровым) и двигатели с зажиганием рабочей смеси от сжатия (дизель).

По типу смесеобразования ДВС делятся на: с внешним смесеобразованием (карбюраторные) и с непосредственным впрыском топлива в цилиндры или впускной коллектор (инжекторные). По типу применяемого топлива различают ДВС работающие на бензине, сжиженном или сжатом природном газе, на спирте (метаноле) и пр.

Читать еще:  Электрическая схема двигателя mtr
Реактивные двигатели [ править | править код ]
  • прямоточные реактивные (ПВРД);
  • пульсирующие реактивные (ПуВРД);
  • газотурбинные двигатели:
    • турбореактивные (ТРД);
    • двухконтурные (ТРДД);
    • турбовинтовые (ТВД);
    • турбовинтовентиляторные ТВВД;
Ракетные двигатели [ править | править код ]
  • жидкостные ракетные двигатели;
  • твердотопливные ракетные двигатели;
  • ядерные ракетные двигатели;
  • некоторые типы электроракетных двигателей.

По применению [ править | править код ]

В связи с принципиально различными требованиями к двигателю в зависимости от его назначения, двигатели идентичные по принципу действия, могут называться «корабельными», «авиационными», «автомобильными» и тому подобными.

Категория «Двигатели» в патентоведении одна из наиболее активно пополняемых. В год по всему миру подаётся от 20 до 50 заявок в этом классе. Часть из них отличаются принципиальной новизной, часть — новым соотношением известных элементов. Новые же по конструкции двигатели появляются очень редко.

Производство [ править | править код ]

Переносные значения [ править | править код ]

Важность, первичность двигателя в технике привела к тому, что слово «двигатель» употребляется в переносном смысле во всех сферах деятельности человека (например, в экономике общеизвестно выражение «Реклама — двигатель торговли»)

Принцип работы сепаратора

Сепаратор, или тарельчатая центрифуга, представляет собой центрифугу вертикальной компоновки. Он используется для разделения и осветления жидкостей. Принцип тарельчатого сепаратора позволяет разделить твердые и жидкие фазы или смешанные жидкие фазы под воздействием центробежной силы. По сравнению с декантерной центрифугой сепаратор существенно отличается по своей технической конструкции и вариантам применения.

Как работает сепаратор?

В основу функционирования тарельчатого сепаратора положен принцип осаждения. В смесях с твердой и жидкой фазами тяжелые твердые вещества накапливаются на дне емкости. Они опускаются под воздействием силы тяжести. (1) В непрерывно работающей системе для разделения твердой и жидкой фаз не все частицы твердого вещества успевают осесть на дно. Они снова покидают систему вместе с жидкой фазой. Разделение выполнено не полностью. Для предотвращения этого используется конструкция в виде ламелей или дисков. (2) Сам процесс сепарации происходит в пространстве между дисками. Чем больше количество пластин или дисков, тем больше площадь осветления. Конусообразная форма пластин или дисков предотвращает их закупорку, в следствие чего частицы твердого вещества просто соскальзывают с них. (3)

Принцип сепаратора позволяет отделять жидкости различной плотности, например, капельки масла в воде или капельки воды в масле.

Разделение, основанное на принципе силы тяжести (1 G), выполняется медленно и не эффективно для многих вариантов промышленного применения. Тарельчатые сепараторы значительно ускоряют процесс разделения. Смесь из твердой и жидкой фаз они разделяют с помощью центробежной силы. «Эквивалентная площадь осветления», которая является измерением эффективности сепаратора, определяется на основании геометрической поверхности (площадь осветления) и центробежного ускорения.

Благодаря высоким силам инерции сепаратор достигает высокой эффективности разделения. По сравнению с декантером, сепаратор работает на более высоких скоростях и отделяет из жидкости более мелкие твердые вещества (частицы до 5 мкм).

Конструкция тарельчатого сепаратора

Разделяемая смесь поступает через стационарную впускную трубу (1) (подача) в распределитель вращающегося барабана (2) (емкость, в которой находится смесь). Там она ускоряется до окружной скорости барабана сепаратора. Важно, чтобы при распределении смеси не возникали ненужные срезывающие усилия, разрушающие мелкие частицы или создающие эмульсии. На внешней стороне основания распределителя предусмотрены прорези или отверстия, через которые отделяемый продукт поступает в пространство с дисками. Разделение выполняется во внутреннем пространства между дисками сепаратора (3). Твердое вещество под действием центробежной силы стремится наружу и накапливается в так называемой камере твердого вещества (4). Жидкие фазы проходят через пространство между дисками и также под действием центробежной силы стремятся в противоположную сторону к оси барабана, а далее вытекают через диск разделения фаз (грейфер) или водослив(5). Используемая конструкция зависит от области применения.

Собранное твердое вещество выходит по отдельной выпускной линии (выгрузка твердой фазы). При этом имеются тарельчатые сепараторы с самоочищающимся барабаном (сепараторы непрерывного действия) и ручные сепараторы. В сепараторах с самоочищающимся барабаном последний имеет механизм открывания, через который с равным временным интервалом выполняется выгрузка отделенных твердых веществ (6). В этом случае барабан состоит из нижней части барабана, в котором расположен гидравлический механизм опорожнения, а также крышки барабана.

Гидравлический разгрузочный механизм открывает барабан сепаратора в самой выступающей части корпуса центрифуги, где собираются твердые вещества. После выхода твердой фазы барабан сепаратора снова закрывается. Это происходит за несколько десятых долей секунды.

Сепаратор, как правило, приводится в движение с помощью поликлинового или плоскоременного привода. Это зависит от конструктивного размера сепаратора. Управление приводным двигателем осуществляется с помощью преобразователя частоты.

Области применения технологии сепарации

Сепараторы предназначены для решения задач разделения, при которых необходима высокая точность разделения или при которых требуется отделение тончайших частиц. Они используются также для разделения твердой и жидкой фаз с небольшой разницей в плотности. Тарельчатые сепараторы обладают очень многообразными вариантами применения и используются в различных отраслях промышленности, в том числе:

  • в пищевой промышленности и производстве напитков
  • в масложировой промышленности
  • в химической, фармацевтической промышленности и биотехнологии
  • в нефтяной промышленности и энергетике
  • в сфере защиты окружающей среды

Сепараторы используются главным образом для трех различных методов разделения:

  • в качестве кларификатора/осветлителя для осветления жидкостей. Осветление — это выделение тонкоизмельченных частиц твердого вещества из жидкости. Сепаратор используется для смесей с низким содержанием твердого вещества. Если очищаемая смесь содержит большое количество твердого вещества, то правильным выбором является декантер. Типичным примером применения сепаратора является осветление фруктового сока путем удаления веществ, обуславливающих помутнение.
  • В качестве очистителя / разделительного сепаратора для разделения жидкостей. Разделение — это отделение жидкости с более низкой плотностью от жидкости с более высокой плотностью. Примером использования сепаратора является отделение капель воды от минерального масла. При этом можно отделять твердые вещества.
  • Для сгущения жидкостей. Концентрирование — это выделение (концентрация) легкой жидкой фазы из тяжелой жидкой фазы. Примером является извлечение эфирного масла из воды с использованием сепаратора. Одновременно возможно отделение твердых веществ.
Ссылка на основную публикацию
Adblock
detector