Эластичный двигатель что это

Эластичность двигателя

способность двигателя иметь большой крутящий момент при меньших оборотах и быстро разгонять автомобиль без существенного увеличения оборотов, что позволяет меньше пользоваться переключением скоростей и обеспечивает лучшие ездовые качества автомобиля

эластичность эластокинематическая подвеска


Ссылки исходящие (структура 3-х уровней):

ПРАВИЛЬНЫЙ ВЫБОР: КРУТЯЩИЙ МОМЕНТ или МОЩНОСТЬ

  • Прочитано: 3935
  • Дата: 10-05-2012, 17:19
  • Печатать

. лошадиные силы помогают заработать миллионы, а ньютонометры — выигрывают гонки!

Вот уже более 100 лет двигатели внутреннего сгорания используются практически во всех областях транспорта. Они являются «сердцем» автомобиля, трактора, тепловоза, корабля, самолёта и за последние тридцать-сорок лет стали представлять собой своеобразный симбиоз последних достижений науки и техники. Для нас уже привычными стали такие термины, как МОЩНОСТЬ и КРУТЯЩИЙ МОМЕНТ, которые являются необходимым критерием оценки силовых возможностей двигателя. Но возникает вопрос — на сколько правильно каждый из нас сможет оценить потенциал двигателя, имея перед глазами лишь цифры с техническими данными автомобиля?

Уверены, что Вы не станете целиком полагаться на заверения продавца в автосалоне, что мотор приобретаемого Вами авто достаточно мощный и полностью Вас удовлетворит. Поэтому Вы приняли решение модернизировать свой двигатель и стоите перед дилеммой – провести оптимизацию для увеличения мощности или увеличить крутящий момент? Для того, чтобы потом не пожалеть о не правильном приобретении и выборе, рекомендуем ознакомиться со всем изложенным ниже.

С давних времён для строительства, перемещения грузов, а так же транспортировки людей человечество использовало всевозможные механизмы и устройства. С изобретением более чем 5 тыс. лет назад ЕГО ВЕЛИЧЕСТВА КОЛЕСА, теория механики претерпела серьёзные изменения. Изначально, роль колеса сводилась только к банальному уменьшению сопротивления (силы трения) и переводу силы трения в качение. Конечно, катить круглое гораздо приятней, чем тащить квадратное!

Но качественное изменение способа применения колеса произошло намного позднее благодаря появлению другого гениального изобретения ― ДВИГАТЕЛЯ! Отцом парового локомотива, чаще называют Джорджа Стивенсона, который построил в 1829 году свой знаменитый паровоз «Ракета». Но ещё в 1808 году англичанин Ричард Тревитик демонстрирует одно из самых революционных изобретений в истории – первый паровоз. Но к нашей всеобщей радости Тревитик сначала построил паровой автомобиль для уличного движения, а затем уж только пришел к мысли o паровозе. Таким образом, автомобиль является в некотором роде прародителем паровоза. К сожалению, судьба первооткрывателя Ричард Тревитика, как впрочем, многих инженеров, но не коммерсантов, сложилась печально. Он разорился, долго жил на чужбине, и умер в нищете. Но не будем о грустном…

Наша задача ― понять, что такое крутящий момент и мощность двигателя, и она значительно упростится, если вспомнить устройство паровоза. Кроме пассивного преобразователя трения из одного вида в другой, колесо стало выполнять еще одну задачу — создавать движущую (тяговую) силу, то есть, отталкиваясь от дороги, приводить в движение экипаж. Давление пара действует на поршень, тот, в свою очередь, давит на шатун, последний проворачивает колесо, создавая КРУТЯЩИЙ МОМЕНТ. Вращение колеса под действием крутящего момента вызывает появление пары сил. Одна из них — сила трения между рельсом и колесом — как бы отталкивается от рельса назад, а вторая — та самая искомая нами СИЛА ТЯГИ через ось колеса передается на детали рамы паровоза. На примере паровоза заметно, что чем больше давление пара, действующее на поршень, а через него — на шатун, тем большая сила тяги будет толкать его вперед. Очевидно, изменяя давление пара, диаметр колеса и положение точки крепления шатуна относительно центра колеса, можно менять силу и скорость паровоза. То же самое происходит в автомобиле.

Разница в том, что все преобразования сил осуществляются непосредственно в самом двигателе. На выходе из него мы имеем просто вращающийся вал, то есть, вместо силы, толкающей паровоз вперёд, здесь мы получаем круговое движение вала с определенным усилием ― КРУТЯЩИМ МОМЕНТОМ. А МОЩНОСТЬ, развиваемая двигателем, ― это всего лишь его способность вращаться как можно быстрее, одновременно создавая при этом на валу крутящий момент. Затем вступает в действие силовая передача автомобиля (трансмиссия), которая этот крутящий момент изменяет так, как нам нужно, и подводит к ведущим колесам. И только в контакте между колесом и дорожным покрытием крутящий момент снова «выпрямляется» и становится тяговой силой.

Очевидно, что тяговую силу предпочтительно иметь наибольшую. Это обеспечит нужную интенсивность разгона, способность преодолевать подъемы и перевозить больше людей и груза. В технической характеристике автомобиля есть такие параметры, как число оборотов двигателя при максимальной мощности и максимальном крутящем моменте и величина этой мощности и момента. Как правило, они измеряются соответственно в оборотах в минуту (мин־¹), киловаттах (кВт) и ньютонометрах (Нм). Необходимо уметь правильно понимать внешнюю скоростную характеристику двигателя. Это графическое изображение зависимости мощности и крутящего момента от оборотов коленчатого вала. Наиболее показательной является форма кривой крутящего момента, а не его величина. Чем раньше достигается максимум и чем более полого кривая падает по мере увеличения оборотов (то есть мотор имеет неизменную тягу), тем правильнее спроектирован и работает двигатель. Однако получить двигатель, обладающий достаточным запасом мощности, высокими оборотами, да еще и стабильным КРУТЯЩИМ МОМЕНТОМ в широком диапазоне оборотов, непросто. Именно на это направлены применение наддува различных систем, электронного регулирования впрыска топлива, переменные фазы газораспределения, настройка выпускной системы и ряд других мероприяти

Давайте рассмотрим пример. Вам предстоит преодолеть подъем, а увеличить скорость движения (разогнать автомобиль перед подъемом) нельзя из-за дорожной обстановки. Для сохранения темпа движения потребуется увеличить силу тяги. Тут часто возникает ситуация, которая выглядит так, добавление газа не даёт прироста силы тяги. Это вызывает снижение скорости, а значит, и оборотов двигателя, сопровождающееся дальнейшим уменьшением силы тяги на ведущих колесах.

Так что же делать? Как поддержать большую тяговую силу при малой скорости движения, если двигатель «не тянет», то есть, не обеспечивает достаточный КРУТЯЩИЙ МОМЕНТ? Вступает в действие трансмиссия. Вы вручную, или автоматическая коробка передач самостоятельно, измените передаточное число так, чтобы сила тяги и скорость движения находились в оптимальном соотношении. Но это дополнительные неудобства в управлении автомобилем. Напрашивается вывод: было бы лучше, если бы двигатель сам приспосабливался к работе в таких ситуациях. Например, вы въезжаете на подъем. Сила сопротивления движению автомобиля возрастает, скорость падает, но силу тяги можно добавить, просто сильнее нажав на педаль газа. Автомобильные инженера для оценки этого параметра используют термин «ЭЛАСТИЧНОСТЬ ДВИГАТЕЛЯ».

Под эластичностью двигателя понимается соотношение между числом оборотов максимальной мощности и оборотов максимального крутящего момента (об/мин Pmax/об/мин Mmax). Оно должно быть таковым, чтобы по отношению к оборотам максимальной мощности обороты максимального крутящего момента были как можно ниже. Это позволит снижать и увеличивать скорость только за счет работы педалью газа, не прибегая к переключению передач, а также ехать на повышенных передачах с малой скоростью. Практически оценить эластичность мотора можно путем проверки способности автомобиля разгоняться от 60 до 100 км/ч на четвёртой передаче. Чем меньше времени займет этот разгон, тем эластичнее двигатель.

В подтверждение вышеизложенного, обратимся к результатам тестов автомобилей, проведенных в Европе:
— Audi А6 (двигатель 2,0 / 170 лс при 4300 об/мин / 280 Нм при 1800 об/мин)
— BMW 523i (двигатель 2,5 / 177 лс при 5800 об/мин / 230 Нм при 3500 об/мин)
— Mercedes E200 Kompressor Classic (двигатель 1,8 / 163 лс при 5500 об/мин / 240 Нм при 3000 об/мин)

Читать еще:  Двигатель вяло набирает обороты

Главным образом, рассмотрим характеристики Audi и BMW. Двигатель Audi, гораздо меньшего объёма и почти такой же мощности, практически не уступает баварцу в разгоне с места, но зато в замерах на эластичность и экономичность кладёт конкурента на обе лопатки. Почему это происходит? Потому что коэффициент эластичности мотора Audi 2,39 (4300/1800) против 1,66 (5800/3500) у BMW, а поскольку вес автомобилей приблизительно равный, жеребец из Мюнхена позволяет дать завидную фору своему соотечественнику. Причём эти впечатляющие результаты достигаются на топливе АИ-95.

Итак, подведём итог!
Из двух двигателей одинакового объема и мощности, предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также упростит манипуляции с рычагом коробки передач. Под все эти условия попадают современные бензиновые и дизельные двигатели с наддувом. Эксплуатируя автомобиль с таким мотором, Вы получите массу приятных впечатлений!

Замер на стенде, что было в планах. Итог доработок.

Здравствуй всяк сюда попавший!
Постоянные гости и подписчики моего бортжурнала отлично понимают что задачей на этот год у меня было значительно улучшить эластичность двигателя. Что такое вообще эта эластичность?
Эластичность двигателя это собой соотношение между оборотами максимального крутящего момента и оборотами максимальной мощности. Можно даже опираясь на эти обороты ввести коэффициент эластичности двигателя, где самый плохой вариант будет когда обороты максимальной мощности будут совпадать с оборотами максимального крутящего момента, и лучший вариант когда соотношение этих оборотов максимальное. Оценить эластичность мотора легко, самый наверное интересный вариант это разгон на второй предаче с 20 км/ч до 80 км/ч и на четвертой передаче с 40 км/ч до 120 км/ч. Чем двигатель эластичнее тем лучше разгон в таком широком диапазоне. Также эластичный двигатель обеспечивает меньший расход топлива и лучший комфорт по причине что не требуется крутить на повышенных оборотах. Исходя из вышесказанного получаем что максимально эластичный двигатель будет иметь такую форму графика.

Такие характеристики двигателя позволяют водителю ездить на довольно высоких передачах на низких передачах что способствует экономии топлива, конечно не стоит ездить на 5 передаче с 1500 оборотами даже если двигатель тянет. Такая характеристика может понравиться не каждому водителю, в свое время я ездил на конфигурации которая обеспечивала как раз такую характеристику двигателя. Мне стало скучно, я захотел вернуть «задоринку» автомобилю и были установлены другие распредвалы которые стоят и сейчас на абсолютно тех-же перекрытиях что и в прошлом году. Задачей на этот сезон у меня стояло как-раз таки увеличить тягу с низов, но превращать двигатель в «трактор» абсолютно не хотелось. Как мы понимаем чтобы улучшить эластичность нам необходимо улучшить характеристики в зоне малых оборотов и как минимум не ухудшить мощностной диапазон. Чтобы совместить улучшение «малых и верхних» оборотов необходимо пришлось немного извращнуться.

Что было предприянято чтобы улучшить эластичность:
— переделка системы выпуска (паук, резонатор, глушитель)
Нам необходимо обеспечить хорошую эффективность работы выхлопной системы. Если кратко то нам нужны длинные первичные трубы, минимум изгибов, достаточный диаметр труб (желательно половина диаметра цилиндра) и самое главное чтобы остальная трасса могла пропустить объем газов. Длинные первичные трубы нам дают хорошие низы, малая затычность обеспечивает меньше потерь на высоких оборотах. Более подробно говорил об этом в своем видео

В общем система выпуска в моем случае была переделана относительно того что было в прошлом году, записи о переделке пока нет, будет в течении недели и здесь появится ссылка.

— переделка системы впуска
Здесь может быть замена ресивера, переделка ресивера, переделка трассы впуска, охлаждение воздуха на впуске. О том что было сделано в моем случае рассказано в этом видео

В общем было решено заехать и произвести замер, далее последуют два графика.
Первый график прошлый год с текущим где более тонкие линии это прошлый год, жирная текущий.
Данный график сравнения имеет ошибку в характеристиках КПП и как следствие обороты несколько неверны, но именно он отображает суть т.к. ошибка в характеристиках КПП шла с моего первого замера.

Как мы видим нам удалось очень значительно улучшить характеристику двигателя на низких оборотах, как обычно бывает улучшив низы мы теряем верха? В нашем случае в среднем мы получали 2-4 силы разницы в плюс. Так что считаю все то что было сделано не лишним. На этом судьба этих распредвалов окончена окончательно.

Кому интересно что будет дальше подписываемся, еще несколько записей в процессе написания)

Шаблон:Двигатель

Двигатель

Встроенный блок для использования в шаблонах << Автомобиль >> , << Мотоцикл >> , << Танк >> , << Тепловоз >> , << Трактор >> , а также << РСЗО >> , << Карточка оружия >> , << Бронеавтомобиль >> и << Автобус >> . В статьях о двигателях используется отдельная карточка — << Автомобильный двигатель >> .

Содержание

  • 1 Заготовки для копирования
  • 2 Параметры
    • 2.1 Производитель
    • 2.2 Наименование
    • 2.3 Код двигателя
    • 2.4 Тип
    • 2.5 Объём
    • 2.6 Мощность
    • 2.7 Мощность лс
    • 2.8 Обороты мощности
    • 2.9 Крутящий момент
    • 2.10 Обороты крутящего момента
    • 2.11 Конфигурация
    • 2.12 Цилиндров
    • 2.13 Клапанов
    • 2.14 Макс. скорость
    • 2.15 Разгон
    • 2.16 Расход
    • 2.17 Диаметр цилиндра
    • 2.18 Ход поршня
    • 2.19 Степень сжатия
    • 2.20 Система питания
    • 2.21 Система смазки
    • 2.22 Изображение
    • 2.23 Ширина изображения
    • 2.24 Выброс
    • 2.25 Экологические нормы
    • 2.26 Охлаждение
    • 2.27 Клапанной механизм
    • 2.28 Материал блока цилиндров
    • 2.29 Материал ГБЦ
    • 2.30 Ресурс
    • 2.31 Тактность
    • 2.32 Порядок работы цилиндров
    • 2.33 Максимальные обороты
    • 2.34 Обороты холостого хода
    • 2.35 Красная зона
    • 2.36 Рекомендованное топливо
    • 2.37 Тип аккумулятора
    • 2.38 Ёмкость аккумулятора
    • 2.39 Дальность хода
    • 2.40 Время зарядки
  • 3 Примеры
    • 3.1 Двигатель внутреннего сгорания
    • 3.2 Электрический двигатель

Заготовки для копирования [ править код ]

Для двигателя внутреннего сгорания:

Для электрического двигателя:

Параметры [ править код ]

Производитель [ править код ]

Марка или подразделение автомобильной компании, производящий двигатель.

Наименование [ править код ]

Имя двигателя на рынке автомобилей, присвоенный организацией, отвечающей за разработку или выпуск двигателя.

Пример: 1,4 л Sigma l4 или 1,2 л TSI BlueMotion V6

Код двигателя [ править код ]

Указывается обозначение двигателя, данное заводом изготовителем для облегчения его идентификации.

Тип [ править код ]

Указывается тип двигателя — дизельный или бензиновый двигатель. Также стоит указать способ поступления воздуха (атмосферный или турбированный двигатель), а также расположение двигателя (расположен поперечно или продольно). Тип рекомендуется записывать в следующем виде:

  1. способ поступления воздуха, тип двигателя, расположение двигателя

Можно прибегнуть к сокращению — «дизельный с турбонаддувом» записать как «турбодизельный».

Внимание: для электродвигателей настоятельно рекомендуется использовать Шаблон:Электрический двигатель.

Объём [ править код ]

Указывается точный объём двигателя (без округления) в кубических сантиметрах (см³).

Мощность [ править код ]

Для указания мощности двигателя в киловаттах (кВт), автоматически добавляет переведённую по ГОСТ величину лошадиных сил (в случае дробной величины мощности автоматический перевод работает только с числами десятичные знаки которых отделены точкой из-за особенностей wikiа).

Мощность лс [ править код ]

Для указания мощности в лошадиных силах (л. с.). Работает вместе и отдельно с параметром мощность , поэтому при наличии мощности в кВт рекомендуется оставлять поле пустым.

Обороты мощности [ править код ]

Количество оборотов двигателя при котором достигается наибольшая мощность . Может быть одним конкретным значением или интервалом.

Крутящий момент [ править код ]

Указывается крутящий момент в Н·м.

Обороты крутящего момента [ править код ]

Количество оборотов двигателя при котором достигается наибольшее значение крутящего момента . Может быть одним конкретным значением или интервалом.

Читать еще:  Что сделать чтобы двигатель не дымил тойота

Конфигурация [ править код ]

Расположение цилиндров в двигателе. Автоматически поддерживает расстановку ссылок:

I или l Рядный двигатель
V V-образный двигатель
W W-образный
H Н-образный двигатель
U U-образный двигатель
VR Конфигурация двигателя VR
X X-образный
роторный Роторно-поршневой двигатель
оппозитный Оппозитный двигатель
ротационный Ротационный
звездообразный Звездообразный двигатель
дельтаобразный Дельтаобразный двигатель
роторно-лопастной Роторно-лопастной двигатель
свободно-поршневой Свободно-поршневой двигатель

В остальных случаях ссылку необходимо создавать самому.

Цилиндров [ править код ]

Количество цилиндров в двигателе.

Клапанов [ править код ]

Общее количество клапанов в двигателе.

Макс. скорость [ править код ]

Максимальная скорость в км/ч, которую может развить двигатель.

Разгон [ править код ]

Время в секундах и долях секунд, за которое двигатель разгоняет автомобиль до 100 км/ч.

Расход [ править код ]

Указывается расход топлива данного двигателя в разных циклах — «смешанном», «городском», «загородном(на трассе)», указывается в л/100 км.

Диаметр цилиндра [ править код ]

Диаметр цилиндра в мм.

Ход поршня [ править код ]

Полное расстояние прохождения поршня в мм.

Степень сжатия [ править код ]

Указывается степень сжатия (в разах).

Система питания [ править код ]

Указывается система подачи топлива в камеру сгорания.

Система смазки [ править код ]

Указывается тип смазки двигателя.

Изображение [ править код ]

Изображение данного двигателя. Пример заполняется так:

Ширина изображения [ править код ]

Для указания ширины в пикселях. По умолчанию (если оставить поле пустым) — 290. Не рекомендуется указывать слишком большой или малый показатель.

Выброс [ править код ]

Указывается выброс CO2 в г/км.

Экологические нормы [ править код ]

Экологический стандарты, регулирующие содержание вредных веществ в выхлопных газах транспортных средств, по европейской классификации.

Охлаждение [ править код ]

Тип охлаждения двигателя.

Клапанной механизм [ править код ]

Указывается тип газораспределительного механизма.

Поддерживается автоматическая расстановка ссылок: ohv/ohc/sohc/dohc

Материал блока цилиндров [ править код ]

Указывается материал, из которого изготовлен блок цилиндров.

Материал ГБЦ [ править код ]

Указывается материал, из которого изготовлена ГБЦ.

Ресурс [ править код ]

Ресурс двигателя, указывается в тысячах км.

Тактность [ править код ]

Число ходов поршня (за один цикл).

Порядок работы цилиндров [ править код ]

Порядок работы цилиндров в двигателе.

Максимальные обороты [ править код ]

Максимальные обороты до которых может крутиться двигатель.

Обороты холостого хода [ править код ]

Обороты двигателя, при которых он работает без нагрузки.

Красная зона [ править код ]

Зона, при которой двигатель крутится на максимальных оборотах .

Рекомендованное топливо [ править код ]

Указывается рекомендованное заводом-изготовителем топливо. При желании можно указать тип топлива (бензин, дизельное топливо и т. д.).

Тип аккумулятора [ править код ]

Ёмкость аккумулятора [ править код ]

Указывается ёмкость аккумулятора в кВт · час.

Дальность хода [ править код ]

Указывается сколько километров электромобиль может проехать без подзарядки.

Время зарядки [ править код ]

Указывается время в часах, требующееся для полной зарядки аккумуляторов. Пример: 7

Примеры [ править код ]

Двигатель внутреннего сгорания [ править код ]

Пример использования в карточке Bugatti Veyron (слева — образец в вики-разметке, справа — Результат):

Электрический двигатель [ править код ]

Пример использования в карточке Tesla Model S:

Во избежание поломок страниц, использующих этот шаблон, экспериментируйте в песочнице (создать | зеркало) или своём личном пространстве.
Пожалуйста, добавляйте категории на подстраницу /doc. Подстраницы этого шаблона.

Международная премия «Двигатель года» за 2,7-литровый оппозитный двигатель

Штуттгарт. Шестицилиндровый оппозитный двигатель Porsche вновь награжден премией «Двигатель года». В этом году международное жюри наградило престижной премией 2,7-литровый двигатель автомобилей Boxster и Cayman, заявленный в категории двигателей объемом от 2,5 до трех литров. «Отличный двигатель для отличного автомобиля. Это «сердце» Porsche сочетает в себе техническое совершенство, спортивные характеристики и впечатляющую экономичность», — так обосновывает решение жюри Дин Славнич, представляющий журнал «Engine Technology International Magazine». Этот британский журнал вручает награды за выдающиеся двигатели уже 15 лет. Жюри отметило также эластичность, технические характеристики и плавность работы самого маленького по объему оппозитного двигателя Porsche.

Этот спортивный двигатель с уменьшенным рабочим объемом создан на базе 3,4-литрового двигателя. В Cayman он работает вместе с коробкой передач Doppelkupplung (PDK) и развивает мощность 275 л.с. (202 кВт), расходуя в цикле NEFZ 7,7 л топлива на 100 км (180 г/км CO2). По своей литровой мощности, составляющей 101,6 л.с./л, этот шестицилиндровый двигатель превосходит установленный для спортивных двигатель магический предел — 100 л.с. на литр объема.

Таким образом оппозитный двигатель Porsche уже в четвертый раз стал победителем среди лучших двигателей в мире. В 2007 году компания Porsche одержала победу в категории двигателей объемом от трех до четырех литров, представив на суд жюри силовой агрегат Porsche 911 Turbo. В 2008 году победу в классе двигателей без ограничения рабочего объема одержал 3,6- литровый оппозитный двигатель с наддувом мощностью 480 л.с. В 2009 году премию «Лучший новый двигатель» получил 3,8-литровый шестицилиндровый двигатель 911 Carrera S. Лучшие двигатели года в различных категориях определяли 87 авторитетных журналистов специализированных изданий из 35 стран. Помимо мощности, расхода топлива, технических характеристик и комфорта журналисты оценивали и используемые перспективные технологии.

Преимущества: компактный и легкий, раскручивающийся до высоких оборотов и плавный в работе – на протяжении 50 лет

В этом году свое 50-летие отмечают Porsche 911 и шестицилиндровый оппозитный двигатель. Главными преимуществами двигателя являются плоская форма, небольшой вес и компактность. Шестицилиндровый оппозитный двигатель отличается плавной работой. В нем отсутствуют так называемые свободные моменты и силы. Помимо этого оппозитные двигатели очень хорошо подходят для того, чтобы снизить центр тяжести автомобиля. Этому способствуют и расположенные горизонтально цилиндры. А чем ниже расположен центр тяжести, тем спортивнее будут ходовые характеристики автомобиля.

Одной из самых примечательных характеристик шестицилиндровых оппозитных двигателей Porsche был и остается пониженный расход топлива по сравнению с мощностью двигателя. В основе этой отличной эффективности лежит общая концепция, взятая из автоспорта. Эта концепция предполагает применение облегченных конструкций, легкую раскручиваемость до высоких оборотов и высокую удельную мощность благодаря усовершенствованному процессу газообмена.

Именно базовые характеристики этих двигателей стали причиной принятия решения в пользу оппозитного шестицилиндрового двигателя при появлении первого 911. В результате был разработан шестицилиндровый оппозитный двигатель с воздушным охлаждением, с осевым вентилятором – ввиду высокой частоты вращения и для обеспечения повышенной плавности работы – и распределительными валами верхнего расположения. Для рабочего объема двигателя сначала были выбраны два литра с возможностью последующего увеличения до 2,7 литра. На тот момент ни один из специалистов компании Porsche не мог даже предположить, что двигатель этого типа в своей базовой форме просуществует до 1998 года и что его рабочий объем увеличится до 3,8 литра.

Мировая премьера 1963 года: двухлитровый двигатель мощностью 130 л.с.

Во время своей мировой премьеры на международной выставке во Франкфурте-на-Майне IAA в 1963 году первый 911, называвшийся тогда еще 901, был оснащен двухлитровым шестицилиндровым оппозитным двигателем мощностью 130 л.с. при 6100 об/мин. Успех этого нового спорткара заставил подумать компанию Porsche о более мощном двигателе, и уже в 1967 году состоялся дебют 911 S с двигателем мощностью 160 л.с. при 6600 об/мин. Вскоре после этого базовая модель получила обозначение 911 L, а позднее – 911 Е. Особую гордость у инженеров тогда вызывал тот факт, что, несмотря на более мощный двигатель и литровую мощность 90 л.с., срок службы силового агрегата 911 S не сократился.

911 занял прочные позиции на мировом рынке не только благодаря своему мощному двигателю, но и за счет прогрессивных технологий. В 1968 году впервые для рынка США компания Porsche выпустила спортивный автомобиль, оснащенный двигателем с низким уровнем токсичности ОГ.

Читать еще:  Давление в форсунках 645 двигатель

При этом компании Porsche удалось это сделать не в ущерб мощности и с обеспечением практически такого же комфорта, а также выполнить требования американских законов к токсичности ОГ, а именно особенно строгие положения, действующие в Калифорнии. Снижение токсичности происходило за счет отвода отработавших газов в систему впуска и в термореакторы. Компания Porsche стала первым европейским предприятием, на котором для проведения конструкторских работ были установлены испытательные стенды для контроля ОГ.

К осени 1968 года компания Porsche стала выпускать системы механического впрыска бензинового топлива с шестиплунжерным насосом. Вместе с увеличением рабочего объема своих двигателей она увеличила их мощность и крутящий момент. В 1969 году шестицилиндровый двигатель сначала стал 2,2-литровым, а спустя два года – 2,4-литровым. В результате мощность двигателей 911 S возросла сначала до 180 л.с., а затем – до 190 л.с. В 1971 году была понижена степень сжатия для того, чтобы все 911 могли ездить по всему миру на бензине с октановым числом 91. В тесном сотрудничестве с компанией Bosch Porsche разработала улучшенную систему постоянного впрыска K-Jetronic, которая впервые стала применяться в 1972 году в предназначенных для рынка США моделях.

В 1974 году состоялся дебют первого серийного спортивного автомобиля с турбонагнетателем 911 Turbo

В 1973 году на модели G поколения 911 стали устанавливаться двигатели с рабочим объемом 2,7 литра, способные работать на неэтилированном бензине с октановым числом 91. Тем самым компания Porsche еще раз подтвердила, что и спортивные автомобили могут быть экологически безопасными. В 1974 году состоялась премьера легендарного автомобиля: компания Porsche представила 911 Turbo – первый серийный спортивный автомобиль с турбонагнетателем. Инженеры компании применили свой богатый опыт работы над двигателями гоночных автомобилей при разработке двигателей с наддувом для серийных автомобилей. За основу двигателя был взят силовой агрегат 911 Carrera RS 3.0 мощностью 260 л.с., с крутящим моментом 343 Нм, разгоняющий автомобиль до максимальной скорости более 250 км/ч.

Работы над дальнейшим совершенствованием шестицилиндрового двигателя сопровождались постепенным увеличением рабочего объема и мощности с применением самых современных технологий очистки отработавших газов. Первые оппозитные двигатели с нейтрализатором и функцией регулировки состава отработавших газов компания Porsche выпустила в 1980 году. Через три года она представила новое поколение атмосферных двигателей с рабочим объемом 3,2 литра и с цифровой электроникой. Теперь все двигатели были подготовлены к работе на неэтилированном бензине с октановым числом 91 – во многих европейских странах этого топлива тогда еще не было. Однако при его появлении можно было быстро приспособиться к новым условиям. В 1988 году компания Porsche еще раз усовершенствовала процессы сгорания и разработала головку цилиндра с двумя свечами зажигания на цилиндр.

Вершиной технического прогресса стал оппозитный атмосферный двигатель с воздушным охлаждением с рабочим объемом 3,8 литра для серии 993, который в топовой модели 1995 года 911 Carrera RS развивал 300 л.с. Небольшой серией был выпущен 911 GT2, разработанный на основе опыта, полученного при участии в автогонках. Сначала его 3,6-литровый двигатель с двойным турбонаддувом развивал 430 л.с., а двигатель модельного ряда 1998 года развивал уже 450 л.с. Двумя системами турбонаддува был оснащен и 911 Turbo. Оснащенный к тому же системой контроля токсичности отработавших газов OBD II, он стал настоящей мировой премьерой. Двигатель мощностью 408 л.с. был разработан на основе 3,6-литрового атмосферного двигателя. Однако он подвергся такой всесторонней модификации, что можно сказать, что он имел свою индивидуальную конструкцию.

В 1996 году состоялась мировая премьера первого шестицилиндрового оппозитного двигателя Porsche с водяным охлаждением

Настоящим прорывом в истории создания шестицилиндровых оппозитных двигателей Porsche стал привод нового модельного ряда Boxter, мировая премьера которого состоялась в 1996 году. Впервые компания Porsche применила силовой агрегат с водяным охлаждением с рабочим объемом 2,5 литра и мощностью 204 л.с. Более не связанные ограничениями, обусловленными бывшим шестицилиндровым двигателем с воздушным охлаждением, разработчики установили на новый силовой агрегат головку цилиндров с двумя распределительными валами и четырьмя клапанами на цилиндр. Годом позже появился новый 911 модельного ряда 996, оснащенный также двигателем с водяным охлаждением. Этот 3,4-литровый силовой агрегат был значительно короче своего предшественника и, прежде всего, более плоским. Его мощность составляла 300 л.с., а его частота вращения была намного выше по сравнению с атмосферным двигателем. К тому же имелась возможность регулировки распределительных валов на впуске, и появилась система регулировки фаз газораспределения VarioCam. Через два года эта система была дополнена системой переключения хода клапанов. С тех пор она носит название VarioCam Plus. Однако важнейшие характеристики остались неизменными: шестицилиндровый двигатель, коленчатый вал на семи опорах, двухмассовый маховик и разделенный в продольном направлении корпус двигателя. На водяное охлаждение был переведен и новый 911 Turbo. В 2000 году на него был установлен новый двигатель мощностью 420 л.с. Свое продолжение получили работы над увеличением рабочего объема и мощности, в результате которых в середине 2000-х годов появились 3,6- и 3,8-литровые оппозитные двигатели мощностью 355 л.с.

В 2008 году 911 Carrera и 911 Carrera S получили разработанные с чистого листа бензиновые двигатели с непосредственным впрыском. При том же рабочем объеме они развивали 345 л.с. и 385 л.с. Из этого же семейства были взяты и двигатели для Boxster и Cayman. Уменьшение рабочего объема двигателей для повышения эффективности расхода топлива стало, начиная примерно с 2008 года, главной задачей разработчиков двигателей. На базе взятых из различных областей знаний компания Porsche разработала новую технику для 911-го модельного ряда 991, который появился в 2011 году: так оппозитный двигатель в 911 Carrera мощностью 350 л.с. получил рабочий объем 3,4 литра вместо прежних 3,6 литра. А двигатель Carrera S мощностью 400 л.с. стал 3,8-литровым. Обе модели дают понять, что модельный ряд 991 был ориентирован на максимальную эффективность с точки зрения расхода топлива: по удельной массе, составляющей 3,5 килограмма на л.с., новый 911 Carrera S опережает своих главных конкурентов. Высочайшие показатели 911 Carrera и 911 Carrera S демонстрируют и по расходу топлива в цикле NEFZ: у 911 Carrera он составляет 8,2 литра на 100 километров (194 г/км CO2), а у 911 Carrera S он составляет 8,7 литра на 100 километров (205 г/км CO2) при работе каждого из них с коробкой передач Porsche Doppelkupplung.

Boxster и Cayman представлены в сегменте двухместных родстеров и купе и имеют двигатели с аналогичными техническими характеристиками. За свои 2,7-литровые двигатели они стали победителями в своей категории и были награждены премией «Двигатель года». В Boxster работает двигатель мощностью 265 л.с. и расходует столько же топлива, сколько силовой агрегат у Cayman с аналогичной мощностью. Boxster S и Cayman S оснащены 3,4- литровым двигателем, который в родстере развивает 315 л.с., а в спортивном купе – 325 л.с. С коробкой передач PDK они расходуют в цикле NEFZ 8,0 л/100 км (188 г/км CO2).

Всем этим компания Porsche доказывает: шестицилиндровый оппозитный двигатель – это не вчерашний день. А отличная база для разработки эффективных спортивных двигателей будущего.

Porsche Boxster/Cayman: расход топлива в городском цикле 12,2 – 10,6 л/100 км; за городом 6,9 – 5,9 л/100 км; в смешанном цикле 8,8 – 7,7 л/100 км; выбросы CO2 206 – 180 г/км

Ссылка на основную публикацию
Adblock
detector