Электрическая схема управления двигателя с фазным ротором

Схемы управления двигателями в функции времени

Этот вид управления применяется тогда, когда все переключения в схеме электродвигателя осуществляют в определенные моменты времени, например при автоматизации процесса пуска электродвигателей без контроля частоты вращения или тока. Длительность интервалов обусловлена и может регулироваться уставками реле времени.

Управление в функции времени получило наибольшее распространение в промышленности из-за простоты и надежности серийно выпускаемых электромагнитных и электронных реле времени .

Так, из рис. 1, а и б видно, что замыканием контакта К линейного контактора в цепь якоря включается все сопротивление реостата, равное R1 + R2 + R3, а включение секций пускового сопротивления может происходить через определенные интервалы времени t1, t2 и t3 при определенных частотах вращения двигателя n1, n2, n3 и при снижении пускового тока до заданного значения I2. Интервалы времени подбираются так, чтобы при каждом очередном закорачивании сопротивления ток двигателя не превышал бы допустимого I1.

При разгоне двигателя от n= 0 до n1 ток убывает до I2 в результате роста противоэлектродвижущей силы. Через промежуток времени t1 замыкается контакт К1, шунтирующий сопротивление R1, что вызывает уменьшение сопротивления реостата до R2+R3, новое увеличение тока до I1 и т. д. По окончании пуска двигатель разгоняется до номинальной частоты вращения, пусковой реостат полностью выведен.

Рис. 1. Схемы управления двигателями в функции времени: а — пускового реостата двигателя постоянного тока, б — пусковая диаграмма

Рассмотрим некоторые схемы управления двигателя в функции времени.

При управлении асинхронным двигателем с фазным ротором в функции времени (рис. 2) выдержка времени, необходимая для закорачивания отдельных ступеней пускового реостата, обеспечивается маятниковыми реле времени, число которых равно числу ступеней. Работа схемы осуществляется следующим образом.

Рис. 2. Схема управления в функции времени асинхронного двигателя с фазным ротором

При нажатии на кнопку SB1 получает электропитание катушка линейного контактора КМ, включающего статор двигателя в сеть. Пусковой реостат при этом введен полностью. Вместе с контактором включается реле времени КТ1, которое через заданный интервал времени замыкает контакт в цепи катушки контактора КМ1.

Контактор срабатывает и замыкает первую секцию пускового реостата ротора. При этом включается реле времени КТ2, которое замыкает с замедлением свои контакты и включает катушку КМ2 и реле времени КТЗ. Контакты контактора КМ2 закорачивают вторую ступень КМ2 пускового реостата. Далее с замедлением времени срабатывает контакт реле КТЗ, включающий катушку КМЗ, которая закорачивает последнюю ступень пускового реостата КМЗ, и двигатель продолжает работать в дальнейшем как с короткозамкнутым ротором.

Останов двигателя производят кнопкой SB, а при перегрузках двигатель отключается расцепителями автоматического вводного выключателя QF. При этом отключается линейный контактор, его блок-контакт КМ и все контакторы ускорения и реле времени без выдержки времени. Схема готова к следующему пуску.

Для пуска вхолостую асинхронного двигателя повышенной мощности с переключением обмотки статора со звезды на треугольник можно использовать схему рис. 3. Переключение в этой схеме выполняется автоматически в функции времени. Нажатием кнопки SB2 обмотку статора включают в сеть контактором КМ. Одновременно подключаются к сети реле времени КТ и катушка KY, соединяющего обмотку статора звездой при помощи трех замыкающих контактов в силовой цепи.

Рис. 3. Схема управления в функции времени асинхронного двигателя переключением со Y на Δ

Двигатель включается и разгоняется при пониженном напряжении. Через заданный промежуток времени реле КТ выключает контактор KY и включает катушку контактора КΔ соединяющего обмотку статора треугольником. Так как в цепи катушки КΔ находится блок-контакт KY, включение контактора КΔ не может произойти раньше выключения контактора KMY.

Ступенчатый пуск многоскоростных асинхронных двигателей является более экономичным и выполняется в функции времени. Рассмотрим пример ступенчатого пуска двухскоростного однообмоточного двигателя (рис. 4). Обмотка статора переключается с треугольника на двойную звезду с удвоением частоты вращения.

Рис. 4. Схема управления в функции времени ступенчатого пуска асинхронного двигателя

Контактором КМ двигатель включается на первую ступень частоты вращения, а контакторами КМ2 и КМ1 на вторую. Для включения двигателя на первую частоту вращения нажатием кнопки SB2 включается катушка контактора КМ и его силовые контакты КМ в главной цепи. Обмотка статора, соединенная треугольником, включается в сеть. Катушка реле времени КТ находится под напряжением, а ее замыкающий контакт (в цепи катушки КМ) замкнут.

Ступенчатый пуск двигателя на вторую частоту вращения выполняется при помощи промежуточного реле К, цепь которого замыкается пусковой кнопкой SB3. Замыкающие контакты К шунтируют обе пусковые кнопки, а размыкающий контакт К отключает реле времени КТ. Замыкающий контакт КТ в цепи катушки КМ отключается с замедлением при возврате, поэтому катушка КМ в первый период пуска оказывается замкнутой, а двигатель включается на первую частоту вращения.

Блок-контакт КМ в цепи катушек КМ2 и КМ1 размыкается. Эти катушки отключены также размыкающим контактом КТ, который срабатывает с замедлением при возврате. Через заданный промежуток времени замыкающий контакт КТ отключит катушку КМ, а его размыкающий контакт включит катушки контакторов второй частоты вращения КМ1 и КМ2. Их главные контакты в силовой цепи переключат обмотку статора на двойную звезду и включат ее в сеть.

Следовательно, двигатель сначала разгоняется до первой частоты вращения, а затем автоматически переключается на вторую частоту вращения. Отметим, что предварительное соединение обмотки статора на двойную звезду и последующее включение ее в сеть выполняется сначала включением двух замыкающих силовых контактов КМ2, а затем трех замыкающих главных контактов КМ1. Такая последовательность включения достигается тем, что катушка КМ1 включается на напряжение через замыкающий блок-контакт КМ2. Останов двигателя выполняется нажатием кнопки «Стоп», обозначенной на схеме буквой SB1.

На рис. 5 изображена схема автоматического пуска двигателя постоянного тока параллельного возбуждения в функции времени. Включением автоматического выключателя QF двигатель подготавливается к пуску. Ток течет по цепи, состоящей из катушки реле времени КТ1, якоря двигателя М и двух ступеней пускового реостата R1 + R2.

Рис. 5. Схема управления в функции времени двигателя постоянного тока параллельного возбуждения

Вследствие большого сопротивления катушки реле КТ1 ток в этой цепи весьма мал и никакого действия на двигатель не оказывает, но само реле срабатывает и его размыкающий контакт в цепи контактора КМ1 размыкается. В обмотку второго реле времени КТ2, включенную параллельно сопротивлению R1, ответвляется столь малый ток, что включиться оно не может. Обмотка возбуждения LM двигателя также оказывается включенной.

Читать еще:  Что такое awt двигатель

Пуск двигателя выполняется нажатием кнопки SB2. Включаются при этом контактор КМ и его контакт в цепи якоря двигателя. Большой пусковой ток ограничивается двумя ступенями реостата R1 и R2. Часть этого тока ответвляется в катушку реле КТ2, и оно, срабатывая, размыкает свой контакт КТ2 в цепи контактора КМ2. Одновременно с замыканием цепи якоря М рабочий контакт контактора КМ закорачивает катушку реле КТ1.

После установленного промежутка времени при возврате реле КТ1 замкнет свой контакт КТ1 в цепи контактора КМ1. Этот контактор своим рабочим контактом KM1 закоротит первую ступень R1 пускового реостата и обмотку реле времени КТ2. С замедлением при возврате его рабочие контакты КТ2 включат контактор КМ2, который своими рабочими контактами КМ2 закоротит вторую ступень R2 пускового реостата. На этом пуск двигателя заканчивается.

При нажатии на кнопку SB1 контактор КМ обесточится и отключит свой главный контакт в цепи якоря. Якорь остается под напряжением, но оказывается включен последовательно с обмоткой реле КТ1, благодаря чему через него проходит незначительный ток. Реле КТ1 сработает, разомкнет свой контакт в цепи контакторов КМ1 и КМ2, они отключатся и разомкнут свои контакты, закорачивающие сопротивления R1 и R2. Произойдет останов двигателя, но его обмотка возбуждения остается подключенной к сети и двигатель тем самым подготовлен для следующего пуска. Полное отключение двигателя выполняют выключением автоматического вводного выключателя ВВ.

Динамическое торможение двигателей также выполняется в функции времени. Для динамического торможения, например асинхронного двигателя, обмотка статора отключается от сети переменного тока и по одной из схем, показанных в табл.1, подключается к источнику постоянного тока. В лесной и деревообрабатывающей промышленности постоянный ток получают от специальных полупроводниковых выпрямителей. В этом случае отпадает необходимость в специальном источнике постоянного тока.

При включении обмотки статора по одной из схем (см. табл. 1) к выпрямителю в обмотке создается неподвижное в пространстве магнитное поле. В неподвижном поле по инерции продолжает вращаться ротор двигателя. В роторе двигателя при этом будут создаваться переменная ЭДС и ток, который будет возбуждать переменное магнитное поле. Переменное магнитное поле ротора при взаимодействии с неподвижным полем статора создает тормозной момент. При этом запасенная кинетическая энергия ротором и исполнительным механизмом превращается в цепи ротора в электрическую энергию, а последняя — в тепловую.

Тепловая энергия рассеивается из цепи ротора в окружающую среду. Выделение тепла в роторе будет нагревать двигатель. Количество выделенного тепла зависит от тока в обмотке статора при питании ее постоянным током. В зависимости от принятой схемы включения обмотки статора при питании ее постоянным током отношение тока к фазному току статора будет различным. Соотношения этих токов для различных схем включения показаны в табл. 1

Схема динамического торможения асинхронного двигателя показана на рис. 6.

ЭЛЕКТРИК в Ступино

Оставить отзыв:

Меню

Статьи

Ретро-проводка на фарфоровых изоляторах

Применение галогенных 12 вольтовых ламп

Замена счетчика электроэнергии

Дуговые ртутные металло — галогенные лампы (ДРИ)

Подсветка кухонной столешницы

Стабилизатор напряжения — помощь электроприборам

Схемы управления электроприводами

Реле напряжения

Электрика на даче

Выполнение технических условий МОЭСК 15кВт 380В на опоре ЛЭП

Схемы управления электроприводами

Управление приводами включает в себя пуск электродвигателя в работу, регулирование скорости вращения, изменение направления вращения, торможение и останов электродвигателя. Для управления приводами применяются электрические коммутационные аппараты, такие как автоматические и неавтоматические выключатели, контакторы и магнитные пускатели. Для защиты электродвигателей от ненормальных режимов (перегрузок и коротких замыканий) применяются автоматические выключатели, предохранители и тепловые реле.

Управление электродвигателями с короткозамкнутым ротором. На рис. 2.8 приведена схема управления асинхронным двигателем с короткозамкнутым ротором с помощью магнитного пускателя.

Рис. 2.8. Схема управления асинхронным электродвигателем с короткозамкнутым ротором с помощью магнитного пускателя: Q – выключатель; F – предохранитель;

КМ – магнитный пускатель, КК1, КК2 – тепловое реле; SBC – кнопочный выключатель включения двигателя; SBT – кнопочный выключатель отключения двигателя

Магнитные пускатели широко применяются для двигателей мощностью до 100 кВт. Они применяются в продолжительном иповторнократковременном режиме работы привода. Магнитный пускатель позволяет осуществлять дистанционный пуск. Для включения электродвигателя М первым включается выключатель Q. Пуск двигателя в работу осуществляется включением кнопочного выключателя SBС. Катушка (электромагнит включения) магнитного пускателя КМ получает питание от сети и замыкает контакты КМ в главной цепи и в цепи управления. Вспомогательный контакт КМ в цепи управления шунтирует кнопочный выключатель SBС и обеспечивает продолжительную работу привода после снятия нагрузки нажатия с кнопочного выключателя. Для защиты электродвигателя от перегрузки в магнитном пускателе имеются тепловые реле КК1 и КК2, включаемые в две фазы электродвигателя. Вспомогательные контакты этих реле включаются в цепь питания катушки КМ магнитного пускателя. Для защиты от коротких замыканий в каждой фазе главной цепи электродвигателя устанавливаются предохранители F. Предохранители могут устанавливаться и в цепи управления. В реальных схемах неавтоматический выключатель Q и предохранители Fмогут быть заменены автоматическим выключателем. Отключение электродвигателя осуществляется нажатием на кнопочный выключатель SBТ.

Простейшая схема управления электродвигателем может иметь только неавтоматический выключательQи предохранителиF или автоматический выключатель.

Во многих случаях при управлении электроприводом необходимо изменять направление вращения электродвигателя. Для этого применяются реверсивные магнитные пускатели.

На рис. 2.9 приведена схема управления асинхронным электродвигателем с короткозамкнутым ротором с помощью реверсивного магнитного пускателя. Для включения электродвигателя М должен быть включен выключатель Q. Включение электродвигателя для одного направления, условно «Вперед», производится нажатием кнопочного выключателя SBС1в цепи питания катушки КМ1 магнитного пускателя.При этом катушка (электромагнит включения) магнитного пускателя КМ1 получает питание от сети и замыкает контакты КМ1 в

главной цепи и в цепи управления. Вспомогательный контакт КМ1 в цепи управления шунтирует кнопочный выключатель SBС1 и обеспечивает продолжительную работу привода после снятия нагрузки нажатия с кнопочного выключателя.

Рис. 2.9. Схема управления асинхронным электродвигателем с короткозамкнутым ротором с помощью реверсивного магнитного пускателя: Q – выключатель; F – предохранитель; КМ1, КМ2 – магнитный пускатель, КК1, КК2 – тепловое реле; SBC1, SBC2 – кнопочный выключатель включения двигателя; SBT – кнопочный выключатель отключения двигателя

Читать еще:  Что ухудшает мощность двигателя

Для пуска электродвигателя в противоположном направлении, условно

«Назад», необходимо нажать кнопочный выключатель SBС2. Кнопочные выключатели SBС1и SBС2 имеют электрическую блокировку, исключающую возможность одновременного включения катушек КМ1 и КМ2. Для этого в цепь катушки КМ1 включается вспомогательный контакт пускателя КМ2, а в цепь катушки КМ2 – вспомогательный контакт КМ1.

Для отключения электродвигателя от сети при его вращении в любом направлении необходимо нажать на кнопочный выключатель SBТ. При этом цепь любой катушки и КМ1 и КМ2 разрывается, их контакты в главной цепи электродвигателя размыкаются, и электродвигатель останавливается.

Схема реверсивного включения может в обоснованных случаях применяться для торможения двигателя противовключением.

Управление электродвигателями с фазным ротором. На рис. 2.10 приведена схема управления асинхронным двигателем с фазным ротором.

с фазным ротором
» height=»271″ src=»http://www.eti.su/images/articles/uprpriv/uprpriv.003.jpg» width=»280″ />Рис. 2.10. Схема управления асинхронным двигателем

с фазным ротором: QF – выключатель; КМ – магнитный пускатель в цепи статора, КМ1 – КМ3 – магнитный пускатель ускорения; SBC – кнопочный выключатель включения двигателя;R – пусковой реостат; SBT – кнопочный выключатель отключения двигателя

» height=»240″ src=»http://www.eti.su/images/articles/uprpriv/uprpriv.004.jpg» width=»310″ />В приведенной схеме защита двигателя М от коротких замыканий и перегрузок осуществляется автоматическим выключателем QF. Для уменьшения пускового тока и увеличения пускового момента в цепь ротора включен трехступенчатый пусковой реостат R. Количество ступеней может быть различным. Пуск электродвигателя осуществляется линейным контактором КМ и контакторами ускорения КМ1 – КМ3. Контакторы снабжены реле времени. После включения автоматического выключателя QF кнопочным выключателем SBC включается линейный контактор КМ, который мгновенно замыкает свои контакты в главной цепи и шунтирует контакты кнопочного выключателя SBC. Двигатель начинает вращаться при полностью введенном пусковом реостате R (механическая характеристика 1 на рис. 2.11). Точка П является точкой трогания.

Рис. 2.11. Механические характеристики асинхронного двигателя с фазным ротором: 1, 2, 3

при включении ступеней пускового реостата; 4 – естественная;

Контакт реле времени КМ в цепи катушки контактора КМ1 с выдержкой времени t1 (рис. 2.12) включает контактор КМ1, который замыкает контакты первой ступени в цепи пускового реостата. С выдержкой времени t2включается контактор КМ2. Аналогично проходит процесс переключения ступеней пускового реостата R до перехода электропривода на естественную характеристику (кривая 4).

Изменение тока статора Iи частоты вращения ротора n2во время пуска электродвигателя показано на рис. 2.12.

Рис. 2.12. Изменение тока статора и частоты вращения ротора асинхронного двигателя с фазным ротором во время пуска

На естественной характеристике ток статора и частота вращения ротора достигают номинальных значений.

Остановка электродвигателя осуществляется кнопочным выключателем SBT.

Электрическая блокировка в приводах. В многодвигательных приводах или приводах механизмов, связанных общей технологической зависимостью, должна быть обеспечена определенная очередность включения и отключения электродвигателей. Это достигается применением механической или электрической блокировки. Электрическая блокировка осуществляется путем применения дополнительных вспомогательных контактов коммутационных аппаратов, участвующих в управлении приводами. На рис. 2.13 приведена схема блокировки последовательности пуска и остановки двух электродвигателей.

Рис. 2.13. Схема блокировки последовательности управления двух электродвигателей: Q1, Q2 – выключатель; F1, F2 – предохранитель; КМ1, КМ2 – магнитный пускатель, КК1, КК2 – тепловое реле; SBC1, SBC2 – кнопочный выключатель включения двигателя;SBT1, SBT2 – кнопочный выключатель отключения двигателя; Q3 – вспомогательный выключатель

В схеме исключена возможность пуска электродвигателя М2 раньше пуска двигателя М1. Для этого в цепь управления магнитного пускателя КМ2, осуществляющего пуск и остановку электродвигателя М2, включен замыкающий вспомогательный контакт КМ1, связанный с пускателем КМ1. В случае остановки электродвигателя М1 этот же контакт произведет автоматическое отключение двигателя М2. При необходимости самостоятельного пуска электродвигателя при опробовании механизма в цепи управления имеется выключатель Q3, который необходимо предварительно замкнуть. Включение электродвигателя М2 осуществляется кнопочным выключателем SBC2, а отключение – SBТ2. Включение двигателя М1 осуществляется выключателем SBC1, а отключение – SBT1. При этом отключается и выключатель М2.

Регулирование скорости рабочего органа машины или механизма. Скорость рабочего органа машины можно изменить за счет применения редукторов или путем изменения частоты вращения электродвигателя. Частоту вращения электродвигателя можно изменить несколькими способами. В строительных машинах и механизмах применяют редукторы с зубчатой, ременной и цепной передачами, позволяющими изменять передаточное число. В приводах, где применяются двигатели с короткозамкнутым ротором, частоту вращения электродвигателя изменяют путем изменения числа пар полюсов. Для этих целей применяют либо электродвигатель с двумя обмотками статора, каждая из которых имеет разное количество пар полюсов, либо электродвигатель с переключением секций фазных обмоток статора.

Возможно регулирование частоты вращения изменением напряжения на обмотке статора. Для этих целей используются автотрансформаторы с плавным регулированием напряжения, магнитные усилители, тиристорные регуляторы напряжения.

Короткозамкнутый и фазный ротор — в чем различие

Как вы знаете, асинхронные электродвигатели имеют трехфазную обмотку (три отдельные обмотки) статора, которая может формировать разное количество пар магнитных полюсов в зависимости от своей конструкции, что влияет в свою очередь на номинальные обороты двигателя при номинальной частоте питающего трехфазного напряжения. При этом роторы двигателей данного типа могут отличаться, и у асинхронных двигателей они бывают короткозамкнутыми или фазными. Чем отличается короткозамкнутый ротор от фазного ротора — об этом и пойдет речь в данной статье.

Короткозамкнутый ротор

Представления о явлении электромагнитной индукции подскажут нам, что произойдет с замкнутым витком проводника, помещенным во вращающееся магнитное поле, подобное магнитному полю статора асинхронного двигателя. Если поместить такой виток внутри статора, то когда ток на обмотку статора будет подан, в витке будет индуцироваться ЭДС, и появится ток, то есть картина примет вид: виток с током в магнитном поле. Тогда на такой виток (замкнутый контур) станет действовать пара сил Ампера, и виток начнет поворачиваться вслед за движением магнитного потока.

Так и работает асинхронный двигатель с короткозамкнутым ротором, только вместо витка на его роторе расположены медные или алюминиевые стержни, замкнутые накоротко между собой кольцами с торцов сердечника ротора. Ротор с такими короткозамкнутыми стержнями и называют короткозамкнутым или ротором типа «беличья клетка» поскольку расположенные на роторе стержни напоминают беличье колесо.

Проходящий по обмоткам статора переменный ток, порождающий вращающееся магнитное поле, наводит ток в замкнутых контурах «беличьей клетки», и весь ротор приходит во вращение, поскольку в каждый момент времени разные пары стержней ротора будут иметь различные индуцируемые токи: какие-то стержни — большие токи, какие-то — меньшие, в зависимости от положения тех или иных стержней относительно поля. И моменты никогда не будут уравновешивать ротор, поэтому он и будет вращаться, пока по обмоткам статора течет переменный ток.

Читать еще:  Suzuki drz400sm тюнинг двигателя

К тому же стержни «беличьей клетки» немного наклонены по отношению к оси вращения — они не параллельны валу. Наклон сделан для того, чтобы момент вращения сохранялся постоянным и не пульсировал, кроме того наклон стержней позволяет снизить действие высших гармоник индуцируемых в стержнях ЭДС. Будь стержни без наклона — магнитное поле в роторе пульсировало бы.

Скольжение s

Для асинхронных двигателей всегда характерно скольжение s, возникающее из-за того, что синхронная частота вращающегося магнитного поля n1 статора выше реальной частоты вращения ротора n2.

Скольжение возникает потому, что индуцируемая в стержнях ЭДС может иметь место только при движении стержней относительно магнитного поля, то есть ротор всегда вынужден хоть немного, но отставать по скорости от магнитного поля статора. Величина скольжения равна s = (n1-n2)/n1.

Если бы ротор вращался с синхронной частотой магнитного поля статора, то в стержнях ротора не индуцировался бы ток, и ротор бы просто не стал вращаться. Поэтому ротор в асинхронном двигателе никогда не достигает синхронной частоты вращения магнитного поля статора, и всегда хоть чуть-чуть (даже если нагрузка на валу критически мала), но отстает по частоте вращения от частоты синхронной.

Скольжение s измеряется в процентах, и на холостом ходу практически приближается к 0, когда момент противодействия со стороны ротора почти отсутствует. При коротком замыкании (ротор застопорен) скольжение равно 1.

Вообще скольжение у асинхронных двигателей с короткозамкнутым ротором зависит от нагрузки и измеряется в процентах. Номинальное скольжение — это скольжение при номинальной механической нагрузке на валу в условиях, когда напряжение питания соответствует номиналу двигателя.

Другие статьи про асинхронные двигатели с короткозамкнутым ротором на Электрик Инфо:

Фазный ротор

Асинхронные двигатели с фазным ротором, в отличие от асинхронных двигателей с короткозамкнутым ротором, имеют на роторе полноценную трехфазную обмотку. Подобно тому, как на статоре уложена трехфазная обмотка, так же и в пазах фазного ротора уложена трехфазная обмотка.

Выводы обмотки фазного ротора присоединены к контактным кольцам, насаженным на вал, и изолированным друг от друга и от вала. Обмотка фазного ротора состоит из трех частей — каждая на свою фазу — которые чаще всего соединены по схеме «звезда».

К обмотке ротора через контактные кольца и щетки присоединяется регулировочный реостат. Краны и лифты, например, пускаются под нагрузкой, и здесь необходимо развивать существенный рабочий момент. Невзирая на усложненность конструкции, асинхронные двигатели с фазным ротором обладают лучшими регулировочными возможностями касательно рабочего момента на валу, чем асинхронные двигатели с короткозамкнутым ротором, которым требуется промышленный частотный преобразователь.

Обмотка статора асинхронного двигателя с фазным ротором выполняется аналогично тому, как и на статорах асинхронных двигателей с короткозамкнутым ротором, и аналогичным путем создает, в зависимости от количества катушек (три, шесть, девять или более катушек), два, четыре и т. д. полюсов. Катушки статора сдвинуты между собой на 120, 60, 40 и т. д. градусов. При этом на фазном роторе делается столько же полюсов, сколько и на статоре.

Регулируя ток в обмотках ротора, регулируют рабочий момент двигателя и величину скольжения. Когда регулировочный реостат полностью выведен, то для уменьшения износа щеток и колец их закорачивают при помощи специального приспособления для подъема щеток.

Асинхронный двигатель с фазным ротором

Способы управления асинхронным двигателем. Ротор асинхронной машины типа «беличья клетка». Устройство, принцип работы, пусковые условия асинхронных электродвигателей с фазным ротором. Применение пускового реостата. Реостатный способ регулирования частоты.

  • посмотреть текст работы «Асинхронный двигатель с фазным ротором»
  • скачать работу «Асинхронный двигатель с фазным ротором» (реферат)

Подобные документы

Стендовое испытание асинхронной машины с фазным ротором в двигательном и генераторном режимах, в режимах холостого хода и короткого замыкания. Ознакомление со способом пуска машины в ход. Обучение построению круговой диаграммы и ее использованию.

лабораторная работа, добавлен 27.01.2011

Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Конструкция асинхронного двигателя с фазным ротором. Снижение тока холостого хода. Магнитопровод и обмотки. Направление электромагнитных сил. Генераторный режим работы.

презентация, добавлен 09.11.2013

Асинхронный двигатель: сущность и принцип действия. Электромагнитный, тепловой, вентиляционный и механический расчет двигателя. Увеличение срока службы токопроводящих щеток фазного ротора. Технология изготовления статорной обмотки асинхронного двигателя.

дипломная работа, добавлен 20.08.2012

Главные размеры асинхронной машины и их соотношения. Обмотка, пазы и ярмо статора. Параметры двигателя. Проверочный расчёт магнитной цепи. Схема развёртки обмотки статора. Расчёт пусковых сопротивлений. Схема управления при помощи командоконтроллера.

курсовая работа, добавлен 21.05.2013

Ремонт трехфазного асинхронного двигателя с короткозамкнутым ротором. Основные неисправности асинхронного двигателя с фазным ротором. Объем и нормы испытаний электродвигателя. Охрана труда при выполнении работ, связанных с ремонтом электродвигателя.

курсовая работа, добавлен 28.01.2011

Устройство асинхронной машины: статор и вращающийся ротор. Механическая характеристика асинхронного двигателя, его постоянные и переменные потери. Методы регулирования частоты вращения двигателя. Работа синхронного генератора в автономном режиме.

презентация, добавлен 06.03.2015

Механическая характеристика асинхронного двигателя с массивным ротором. Параметрическая модель асинхронного двигателя с массивным ротором в установившихся и переходных режимах. Влияние насыщения и поверхностного эффекта на магнитное сопротивление ротора.

реферат, добавлен 19.02.2014

Роль электротехники в развитии судостроения. Функциональная схема управления асинхронным двигателем с короткозамкнутым ротором. Принцип работы электрической схемы вентилятора. Технология монтажа электрической схемы, используемые материалы и инструменты.

курсовая работа, добавлен 12.12.2009

Проектирование и расчет асинхронного двигателя с короткозамкнутым ротором по заданным исходным характеристикам, установленным в соответствии с требованиями государственных и отраслевых стандартов. Расчет обмоток статора, ротора, намагничивающего тока.

курсовая работа, добавлен 04.11.2012

Асинхронный двигатель: строение и разновидности. Вращающееся магнитное поле. Принцип действия асинхронного двигателя с короткозамкнутым ротором. Регулирование частоты вращения путем вращения и скольжения. Тормозные режимы работы асинхронного двигателя.

презентация, добавлен 19.10.2014

  • 1
  • 2
  • 3
  • 4
  • »
Ссылка на основную публикацию