Электрический двигатель постоянного тока его строение и принцип работы

Двигатели постоянного тока

Урок 45. Технология 8 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Двигатели постоянного тока»

Прежде всего давайте определимся какую функцию выполняют двигатели. Они превращают электрическую энергию в механическую.

Первый электрический двигатель был создан в 1834 году русским учёным Борисом Семёновичем Якоби.

В деятельности человека находят свое применение электродвигатели самых разных конструкций. В производстве их используют для того, чтобы привести в движение станки и механизмы, трамваи, троллейбусы, электровозы и многое другое. Электродвигатели используются даже в игрушках.

Почему же все-таки именно электродвигатели, а не паровые двигатели или, например двигатели внутреннего сгорания? Основным преимуществом двигателя, работающего на электричестве, можно назвать то, что при его работе не выделяются вредные газы, дым или пар. Для их работы не нужны запасы топлива или воды. Электродвигатели легко установить в любом удобном месте: и на стене, и под полом трамвая или троллейбуса и даже в колесах лунохода.

На производстве и в быту чаще всего используют коллекторный электродвигатель. Перед вами модель простейшего коллекторного электродвигателя. Он состоит из неподвижной части – статора и вращающейся части – ротора. В качестве статора выступает постоянный магнит. Ротор состоит из якоря и коллектора. Простейшим якорем может быть электромагнит, который представляет собой сердечник и обмотку. На валу якоря укреплён коллектор, который представляет собой два полукольца. Они изолированы не только друг от друга, но и от вала двигателя. Каждый вывод обмотки якоря припаивают к отдельному полукольцу. Электрический ток от батареек поступает в обмотку якоря через щётки – специальные скользящие контакты. Щётки чаще всего представляют собой две упругие металлические пластины, которые соединены проводами с источником тока и прижаты к полукольцам коллектора.

Поскольку якорь – это электромагнит, то у него должны быть южный и северный полюса.

Давайте узнаем, как они образуются.

Щётки соединяются с источником тока так, как показано на рисунке. Благодаря такому соединению электрический ток, который проходит по обмотке якоря делает одну сторону якоря северным полюсом, а вторую – южным.

По схеме видно, что северный полюс якоря располагается рядом с северным полюсом статора, а южный полюс якоря – рядом с южным полюсом статора.

Одноименные магнитные полюса отталкиваются, и якорь начинает вращаться. Вместе с якорем поворачивается и коллектор.

Северный полюс якоря при вращении притягивается к южному полюсу статора. Но еще до того как они сблизятся полукольца коллектора притягиваются друг к другу и полярность якоря опять изменяется. То есть меняется направление тока в обмотке якоря. Другими словами, коллектор в электродвигателе – это специальный переключатель, который меняет направление в обмотке якоря автоматически.

Как только полярность якоря меняется, полюса вновь отталкиваются друг от друга и вращение продолжается.

В основном в качестве постоянного магнита для создания магнитного тока используют электромагниты.

Существует два способа подключения обмотки возбуждения к источнику тока: параллельно по отношению к обмотке якоря и последовательно ей.

От того каким именно способом присоединена обмотка возбуждения зависят свойства электродвигателя.

Если подключение параллельное, то с увеличением механической нагрузки на вал число оборотов двигателя практически не меняется. Двигатели с таким видом соединения обмотки возбуждения к якорю чаще всего используются для привода станков.

При последовательном соединении с увеличением механической нагрузки на вал, число оборотов резко уменьшается. Двигатели такого рода находят свое применение на электрическом транспорте.

По сравнению с полем постоянных магнитов, электромагнитное возбуждение двигателя позволяет не только усилить магнитное поле, но и управлять его интенсивностью.

Для того, чтобы управлять интенсивностью магнитного поля нужно реостатом менять величину тока в цепи обмотки возбуждения. Этим изменяется число оборотов двигателя.

Еще один способ менять число оборотов двигателя – смена напряжения на его зажимах. Но этот способ – более дорогой. Поскольку, если через реостат проходит весь ток двигателя, то появляются дополнительные потери электроэнергии.

Понятно, что мы рассмотрели очень упрощенную модель электродвигателя. Настоящий имеет более сложное строение.

В основном вместо постоянного магнита для создания магнитного поля статора используется мощный электромагнит. Обмотка возбуждения такого двигателя одновременно выполняет роль обмотки одного из полюсов. Соединять обмотки полюсов надо так, чтобы полюсные наконечники сердечников имели разную полярность, которая будет обращена к якорю.

Посмотрите, как выглядит вращающийся ротор двигателя. Он состоит из якоря и коллектора.

Чтобы коэффициент полезного действия двигателя возрастал, нужно на сердечнике якоря разместить несколько обмоток. Это приводит к тому, что в коллектор входит не два полукольца, а много медных пластин. Они изолированы не только друг от друга, но и от вала двигателя.

Графитовые щётки накладывают на коллектор. К гладкой поверхности коллектора щётки прижимают с помощью пружин. Движение якоря по валу напрямую передается рабочим органам потребителя. Вращается вал в подшипниках, которые запрессованы в переднюю и заднюю крышки статора. Охлаждается двигатель вентилятором, крыльчатка которого располагается на валу.

Подведем итоги урока.

Сегодня мы с вами говорили о двигателе постоянного тока. Выяснили устройство и принцип действия коллекторного электродвигателя. Узнали, что у него две основные части: неподвижная часть — статор, который представляет собой магнит, создающий постоянное магнитное поле. И вращающаяся часть – ротор. Составные части ротора – якорь и коллектор. Электрический ток от источника подается на обмотку якоря через щётки.

Рассмотрели два случая подключения обмотки возбуждения к источнику тока в роторе, состоящем из электромагнита.

И познакомились с устройством настоящего рабочего электродвигателя.

Онлайн помощник домашнего мастера

Электродвигатель постоянного тока: устройство и принцип работы. Основные особенности использования и маркировка

  • Электродвигатели

Технический прогресс требует нестандартных подходов и решений. Как выяснилось впоследствии, асинхронные трехфазные двигатели совсем не подходят к конструктивным особенностям электротранспорта, где нужно плавно регулировать скорость его движения, дать ему определенную маневренность и независимость. Так появились электродвигатели, работающие на постоянном токе.

Способность регулировать скорость вращения вала – важное преимущество их над асинхронными. С другой стороны, высокая цена не сделала их столь популярными и легкодоступными.

В быту они в основном встречаются в игрушках для детей, работающих от батареек. На производстве же – для различного оборудования и шахтных электровозов, работающих от мощных аккумуляторов.

Чтобы понять, как работает двигатель постоянного тока, вспомним физику. В частности, закон Ампера: рамка, изготовленная из проволоки, помещенная в поле магнита, начинает вращаться при подаче на нее напряжения. Сложного фактически ничего нет, не считая самой конструкции.

В процессе многочисленных испытаний и доработок получилось достичь совершенного устройства, способного развивать хорошую мощность и управляемую скорость вращения.

Краткое содержимое статьи:

Конструкция

Устройство двигателя постоянного тока подобно синхронному.Различие незначительные. Принцип работы – тот же. Разновидность подводимого тока – единственное их отличие.

Конструктивно выделяются следующие элементы:

  • Корпус;
  • Якорь, жестко насаженный на вал;
  • Сердечник и обмотки полюсов (магниты);
  • Статор;
  • Вентилятор;
  • Медно-графитные щетки;
  • Кольца коллектора, к которым подсоединены концы обмоток якоря;
  • Подшипники;
  • Торцевые крышки.

Рассматривая фото электродвигателя постоянного тока, можно убедиться, что внешне и начинкой он ничем не отличается от синхронного.

Якорь – главный элемент. При подаче на него напряжения через щетки и коллектор, он начинает вращаться в магнитном поле статора. Как простая рамка, эксперименты с которой описываются в учебниках по физике, только конструкция намного сложнее и более совершенная.

Статор жестко соединен с корпусом электродвигателя, имеет обмотки возбуждения или магниты, между полюсами которых вращается якорь на подшипниках, помещенных с торцов в пазы крышек.

В передней части вала имеется паз под шпонку для крепления шестерни или шкива (механической части). В задней – вентилятор для охлаждения работающих элементов – якоря и статора.

Наиболее уязвимое место двигателей постоянного тока, влияющее на его полезные характеристики – медно-графитные щетки, которые прижимаются к коллектору. Со временем они изнашиваются, образуют на поверхности пыль, искрят. Могут ослабнуть, болтаться на пружинах, в результате чего потеряется контакт, и двигатель перестанет работать.

Важно своевременно очищать поверхность колец коллектора от пыли, следить за степенью износа щеток, степени их прилегаемости и исправности.

Читать еще:  Болотоходы с лифановским двигателем своими руками

Классификация

В зависимости от характера воздействия на обмотки электродвигатели постоянного тока подразделяются на следующие типы:

  • С независимым возбуждением. Скорость вращения регулируется реостатом, включенным в цепь обмоток. Запрещены к выпуску, если слишком малая или незначительная рабочая механическая нагрузка, так как иначе возникают слишком высокие токи в обмотках якоря.;
  • С последовательным. Якорь подключается последовательно с обмоткой возбуждения к одному источнику питания.
  • С параллельным. Якорь и обмотки статора имеют общий источник, но подключены независимо друг от друга. Параллельно. Скорость вращения регулируется реостатом, помещенным в цепи якоря;
  • Со смешанным. Каждый полюс имеет по 2 обмотки. Соединяются в рабочую схему вычитанием или суммированием потоков. Изменяя полярность одной из обмоток, можно заставить вал изменить направление вращения.

От того, как подключен электродвигатель постоянного тока, зависят его механически и электротехнические свойства.

Плюсы – минусы

Любому электрооборудованию присущи свои особенности, которые нужно учитывать в процессе эксплуатации, чтобы оно прослужило дольше.

Двигатели постоянного тока имеют свои неоспоримые достоинства:

  • Имеют небольшие габариты;
  • Отсутствуют сложности управления;
  • Простое строение и конструктивные особенности, поддающиеся ремонту и техническому обслуживанию;
  • Можно использовать для генерирования тока;
  • Быстро запускаются;
  • Плавная регулировка оборотов вала (ускорение и замедление с помощью реостата).

Наряду с существенными достоинствами, имеется ряд недостатков:

  • Нужен специальный питающий блок, выравнивающий переменное напряжение;
  • Высокая ценовая стоимость;
  • Периодическая перезарядка аккумуляторов. Когда они сели, запуск двигателя невозможен;
  • Рабочая зона ограничена радиусом взаимодействия с источником питания (троллейбус, трамвай), и когда он отсутствует либо поврежден, работа механизмов устройства невозможна;
  • Требует периодического техобслуживания (замены быстроизнашивающихся колец коллектора и графитно-медных щеток).

Применение

В основном это – транспорт, работающий на электрическом токе и устройства, в которых необходимо тщательное управление скоростью вращения.

Обычно такие двигатели можно встретить в конструкции:

  • Троллейбусов;
  • Электромобилей в парке аттракционов;
  • Трамваев:
  • Транспортно-подъемных устройствах;
  • Шахтных электровозов.

А также – в детских игрушках, работающих на пальчиковых батарейках – машинках, танчиках, самолетах, вертолетах и прочем.

Следует отметить, что двигатели постоянного тока могут быть энергонезависимыми, а устройства и механизмы обладать большей маневренностью и свободой действий, не требовать подключение к источнику, питаться от мощных перезаряжаемых аккумуляторов.

Единственное слабое звено – это щетки и кольца коллектора, которые быстро изнашиваются и требуют периодической замены.

Несмотря на это, весь электротранспорт в крупных городах снабжен различными видами двигателями постоянного тока, а не асинхронными, что подчеркивает их громадную роль в жизни современного общества и страны в целом.

Электродвигатель постоянного тока: устройство, принцип работы, характеристики, КПД

Трудно даже представить, как выглядел бы современный мир без электродвигателя постоянного тока (впрочем, и переменного тоже). Любой современный механизм оснащен электродвигателем. Он может иметь разное предназначение, но его наличие, как правило, критически важно. Ожидается, что в ближайшем будущем роль электродвигателя постоянного тока будет лишь возрастать. Уже сегодня без этого устройства невозможно создать качественное, надежное и бесшумное оборудование с регулируемыми скоростями работы. А ведь это – залог развития государства, да и мировой экономики в целом.

Из истории двигателя постоянного тока

В ходе проведения опытов в 1821 году известный ученый Фарадей случайно обнаружил, что магнит и проводник с током каким-то образом воздействуют друг на друга. В частности, постоянный магнит может вызывать вращение простейшего контура из проводника с током. Результаты этих экспериментов были использованы для дальнейших исследований.

Уже в 1833 году Томасом Дэвенпортом создается модель поезда с небольшим электродвигателем, способным приводить его в движение.

В 1838 году в Российской Империи построен пассажирский катер на 12 мест. Когда это плавательное средство с электромотором пошло по Неве против течения, это вызвало настоящий взрыв эмоций в научных кругах и не только.

Как работает электродвигатель постоянного тока

Если рассматривать работу поверхностно, как это делают в школе на уроках по физике, то может показаться, что в ней нет абсолютно ничего сложного. Но это только на первый взгляд. На самом же деле наука об электроприводе является одной из наиболее тяжелых в цикле технических дисциплин. При работе электродвигателя протекает целый ряд сложных физических явлений, которые до сих пор в полной мере не изучены и объясняются различными гипотезами и предположениями.

В упрощенном варианте принцип работы электродвигателя постоянного тока можно описать следующим образом. В магнитное поле помещают проводник и пускают через него ток. При этом если рассматривать сечение проводника, то вокруг него возникают невидимые силовые концентрические окружности – это магнитное поле, которое формируется током в проводнике. Как уже было сказано, данные магнитные поля являются невидимыми для глаза человека. Но существует нехитрый прием, позволяющий визуально наблюдать их. Самый простой способ – проделать в фанере или в плотном листе бумаги отверстие, через которое и пропустить провод. При этом поверхность вблизи отверстия необходимо покрыть тонким слоем мелкодисперсного магнитного металлического порошка (можно использовать и мелкие опилки). При замыкании цепи частицы порошка выстраиваются по форме магнитного поля.

Собственно, на этом явлении и основан принцип работы электродвигателя постоянного тока. Проводник с током помещается между северным и южным полюсами U-образного магнита. В результате взаимодействия магнитных полей, проволока приводится в движение. Направление движения зависит от того, как расположены полюса, и может точно определяться так называемым правилом «буравчика».

Сила Ампера

Сила, которая выталкивает проводник с током за пределы поля постоянного магнита, называется силой Ампера – по имени известного исследователя электрических явлений. Его имя также носит единица измерения силы тока.

Чтобы найти численное значение данной силы, нужно умножить силу тока в рассматриваемом проводнике на его длину и на величину (вектор) индукции магнитного поля.

Формула будет выглядеть следующим образом:

Модель простейшего двигателя

Грубо говоря, чтобы построить самый примитивный двигатель, необходимо помесить рамку из токопроводящего материала (провода) в магнитное поле и запитать ее током. Рамка повернется на определенный угол и застопорится. Данное положение на сленге специалистов в области электропривода называется «мертвым». Причина остановки заключается в том, что магнитные поля, так сказать, компенсируются. Иными словами, подобное происходит тогда, когда равнодействующая сила становится равной нулю. Поэтому устройство электродвигателя постоянного тока включает не одну, а несколько рамок. В реальном агрегате промышленного назначения (который устанавливается на оборудование) таких элементарных контуров может быть очень и очень много. Так, когда на одной рамке силы уравновешиваются, другая рамка выводит ее из «ступора».

Особенности устройства двигателей разной мощности

Даже человек, далекий от мира электротехники, сразу же смекнет, что без источника постоянного магнитного поля ни о каком электродвигателе постоянного тока просто не может идти и речи. В качестве таких источников применяются самые разные устройства.

Для маломощных электродвигателей постоянного тока (на 12 вольт и менее) самым идеальным решением является постоянный магнит. Но этот вариант не подойдет для агрегатов большой мощности и размеров: магниты будут слишком дорогими и тяжелыми. Поэтому для электродвигателей постоянного тока на 220 В и более целесообразней применять индуктор (обмотку возбуждения). Чтобы индуктор стал источником магнитного поля, его необходимо запитать.

Конструкция электродвигателя

В общем случае конструкция любого двигателя на постоянном токе включает следующие элементы: коллектор, статор и якорь.

Якорь служит несущим элементом для обмотки электродвигателя. Он состоит из тонких листов стали электротехнического назначения с углублениями по периметру для укладки провода. Материал изготовления в данном случае очень важен. Как уже было сказано, применяется электротехническая сталь. Такая марка материала отличается большим размером искусственно выращенного зерна и мягкостью (в результате низкого содержания углерода). Кроме того, вся конструкция состоит из тонких, изолированных листов. Все это не позволяет возникать паразитным токам и предотвращает перегрев якоря.

Статор является неподвижной частью. Он выполняет роль магнита, рассмотренного ранее. Для демонстрации работы модели двигателя в лабораторных условиях для наглядности и лучшего понимания принципов используют статор с двумя полюсами. В реальных промышленных двигателях применяются устройства с большим числом пар полюсов.

Читать еще:  Характеристика двигателя 815 мерседес

Под коллектором понимается коммутатор (соединитель), который подает ток на контуры обмотки электродвигателя постоянного тока. Его наличие строго необходимо. Без него двигатель будет работать рывками, не плавно.

Разновидности двигателей

Не существует одного универсального двигателя, который бы применялся абсолютно во всех отраслях техники и народного хозяйства и удовлетворял всем требованиям в сфере безопасности и надежности при эксплуатации.

Следует очень ответственно подходить к выбору электродвигателя постоянного тока. Ремонт – чрезвычайно сложная и дорогостоящая процедура, которую могут выполнить лишь специалисты с соответствующей квалификацией. И если конструкция и возможности двигателя не будут отвечать требованиям, то на ремонт будут уходить значительные денежные средства.

Существует четыре основные разновидности двигателей постоянного тока: коллекторные, инверторные, униполярные, а также универсальные коллекторные двигатели постоянного тока. Каждый из перечисленных видов имеет свои положительные и отрицательные качества. Следует дать краткую характеристику каждому из них.

Коллекторные двигатели постоянного тока

Существует большое количество возможных способов реализации двигателей данного типа: один коллектор и четное количество контуров, несколько коллекторов и несколько контуров обмотки, три коллектора и столько же витков обмотки, четыре коллектора и два витка обмотки, четыре коллектора и четыре контура на якоре, и наконец – восемь коллекторов с якорем без рамки.

Данный тип двигателя отличается сравнительной простотой исполнения и производства. Именно по этой причине он прослыл широкоуниверсальным двигателем, применение которого очень обширно: от игрушечных автомобилей на радиоуправлении до очень сложных и высокотехнологичных станков с программным управлением немецкого или японского производства.

Об инверторных двигателях

В общем и целом данный тип двигателей сильно похож на коллекторный и имеет те же достоинства и недостатки. Единственное отличие заключается в механизме запуска: он более совершенный, что позволяет без труда осуществлять реверсирование оборотов и регулировку частоты вращения ротора. Таким образом, эксплуатационные характеристики электродвигателя постоянного тока данного типа превосходят по ряду параметров коллекторные двигатели.

Но если в чем-либо получается выигрыш, то в каких-либо вещах обязательно будет наблюдаться проигрыш. Это неоспоримый закон Вселенной. Так и в этом случае: превосходство обеспечивается довольно сложной и капризной техникой, которая часто выходит из строя. По словам опытных специалистов, ремонт электродвигателей постоянного тока инверторного типа осуществить довольно сложно. Порой даже бывалые электрики не могут диагностировать неисправность в системе.

Особенности униполярных двигателей постоянного тока

Принцип действия остается прежним и основан на взаимодействии магнитных полей проводника с током и магнитом. Но проводником тока служит не проволока, а диск, вращающийся на оси. Подача тока осуществляется следующим образом: один контакт замыкается на металлическую ось, а другой посредством так называемой щетки соединяет край металлического круга. Такой двигатель, как видно, имеет довольно сложную конструкцию и поэтому часто выходит из строя. Основное применение – научные исследования в области физики электричества и электропривода.

Особенности универсальных коллекторных электродвигателей

Принципиально ничего нового данный тип двигателей не несет. Но он имеет очень важную особенность – возможность работать как от сети постоянного тока, так и от сети переменного тока. Порой это его свойство может позволить сэкономить значительные денежные средства на ремонте и модернизации оборудования.

Частота переменного тока жестко регламентирована и составляет 50 Герц. Иными словами, направление движения отрицательно заряженных частиц меняется 50 раз в секунду. Некоторые ошибочно полагают, что и ротор электродвигателя должен менять направление вращения (по часовой стрелке – против часовой стрелки) 50 раз в секунду. Если бы это было действительно так, то о каком-либо полезном применении электрических двигателей переменного тока не могло бы быть и речи. Что происходит в действительности: ток обмотки якоря и статора синхронизируется при помощи простейших конденсаторов. И поэтому, когда меняется направление тока на рамке якоря, меняется его направление и на статоре. Таким образом, ротор постоянно вращается в одну сторону.

К сожалению, КПД электродвигателя постоянного тока данного типа значительно ниже, чем у инверторных и униполярных двигателей. Поэтому его применение ограничено довольно узкими областями – там где необходимо получить максимальную надежность любой ценой, без учета затрат на эксплуатацию (например, военное машиностроение).

Заключительные положения

Технологии не стоят на месте, и сегодня множество научных школ по всему миру конкурируют между собой и стремятся создать дешевый и экономичный двигатель с высоким КПД и эксплуатационными характеристиками. Мощность электродвигателей постоянного тока из года в год растет, при этом падает их энергопотребление.

По прогнозам ученых, будущее будет определяться электрооборудованием, а эпоха нефти завершится уже довольно скоро.

Презентация на тему: «Электродвигатель постоянного тока» — презентация

Презентация была опубликована 6 лет назад пользователемГригорий Яблонский

Похожие презентации

Презентация на тему: » Презентация на тему: «Электродвигатель постоянного тока»» — Транскрипт:

1 Презентация на тему: «Электродвигатель постоянного тока»

2 Электродвигатель постоянного тока (ДПТ) электрическая машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию. По некоторым мнениям этот двигатель можно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простейший двигатель, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), одного электромагнита с явно выраженными полюсами на якоре (двух зубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточно коллекторного узла с двумя пластинами (ламелями) и двумя щётками.

3 Статор (индуктор) На статоре ДПТ располагаются, в зависимости от конструкции, или постоянные магниты (микродвигатели), или электромагниты с обмотками возбуждения (катушками, наводящими магнитный поток возбуждения). В простейшем случае статор имеет два полюса, то есть один магнит с одной парой полюсов. Но чаще ДПТ имеют две пары полюсов. Бывает и более. Помимо основных полюсов на статоре (индукторе) могут устанавливаться добавочные полюса, которые предназначены для улучшения коммутации на коллекторе.

4 Ротор (якорь) Минимальное число зубцов ротора, при котором само запуск возможен из любого положения ротора три. Из трёх, кажущихся явно выраженными, полюсов, на самом деле один полюс всё время находится в зоне коммутации, то есть ротор имеет две пары полюсов (как и статор, так как в противном случае работа двигателя невозможна). Ротор любого ДПТ состоит из многих катушек, на часть которых подаётся питание, в зависимости от угла поворота ротора, относительно статора. Применение большого числа (несколько десятков) катушек, необходимо для уменьшения неравномерности крутящего момента, для уменьшения коммутируемого (переключаемого) тока, и для обеспечения оптимального взаимодействия между магнитными полями ротора и статора (то есть для создания максимального момента на роторе).

5 По способу возбуждения электрические двигатели постоянного тока делят на четыре группы: 1) С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока. 2) С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря. 3) С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой. 4) Двигатели со смешанным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения Схемы возбуждения электродвигателей постоянного тока показаны на рисунке: А) независимое, б) параллельное, в) последовательное, г) смешанное

6 Коллектор Коллектор (щёточно-коллекторный узел) выполняет одновременно две функции: является датчиком углового положения ротора и переключателем тока со скользящими контактами. Конструкции коллекторов имеют множество разновидностей. Выводы всех катушек объединяются в коллекторный узел. Коллекторный узел обычно представляет собой кольцо из изолированных друг от друга пластин-контактов (ламелей), расположенных по оси (вдоль оси) ротора. Существуют и другие конструкции коллекторного узла. Графитовые щётки Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах в роторе ДПТ возникают мощные переходные процессы, в результате чего искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора недопустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.

Читать еще:  Megane 2 температура двигателя

7 Коммутация в электродвигателях постоянного тока. В процессе работы электродвигателя постоянного тока щетки, скользя по поверхности вращающегося коллектора, последовательно переходят с одной коллекторной пластины на другую. При этом происходит переключение параллельных секций обмотки якоря и изменение тока в них. Изменение тока происходит в то время, когда виток обмотки замкнут щеткой накоротко. Этот процесс переключения и явления, связанные с ним, называются коммутацией. В момент коммутации в короткозамкнутой секции обмотки под влиянием собственного магнитного поля наводится э. д. с. самоиндукции. Результирующая э. д. с. вызывает в короткозамкнутой секции дополнительный ток, который создает неравномерное распределение плотности тока на контактной поверхности щеток. Это обстоятельство считается основной причиной искрения коллектора под щеткой. Качество коммутации оценивается по степени искрения под сбегающим краем щетки и определяется по шкале степеней искрения.

8 Принцип работы Принцип работы любого электродвигателя основан на поведении проводника с током в магнитном потоке. если по проводнику находящемся в магнитном потоке пропустить ток, то он будет стремиться сместиться в сторону, то есть проводник будет выталкивать из промежутка между магнитами как пробку из бутылки шампанского. Направление силы, которая выталкивает проводник строго определена и её можно определить по, так называемому, правилу левой руки. Это правило заключается в следующем: если ладонь левой руки разместить в магнитном потоке так что бы линии магнитного потока были направлены в ладонь, а пальцы по направлению прохождения тока в проводнике, то большой палец, отогнутый на 90 гр. укажет на направление смещения проводника. Величина силы с которой проводник стремиться переместиться, определяется величиной магнитного потока и величины тока проходящему по проводнику. Если проводник выполнить в виде рамки с осью вращения расположенной между магнитами, то рамка будет стремиться повернуться вокруг своей оси. Если не учитывать инерцию, то рамка повернётся на 90 гр., так как потом сила движущая рамку будет расположена в одной плоскости с рамкой и стремиться раздвинуть рамку, а не повернуть её. Но фактически рамка проскакивает по инерции это положение и если в этот момент изменить направление тока в рамке, то она повернётся ещё как минимум на 180 гр., при очередной смене направления тока в рамке, она ещё повернётся на 180 градусов и так далее.

9 История создания. Первый этап развития электродвигателя ( ) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую. В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя. Для второго этапа развития электродвигателей ( ) характерны конструкции с вращательным движением якоря. Томас.Дэвенпорт американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину. В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. В 1838 году этот двигатель (0,5 к Вт) был испытан на Неве для приведения в движение лодки с пассажирами, т. е. получил первое практическое применение.

10 Майкл Фарадей. 22 сентября 1791 г. – 25 августа 1867 г. Английский физик Майкл Фарадей родился в предместье Лондона в семье кузнеца. В 1821 г. он впервые наблюдал вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создал первую модель электродвигателя. Его исследования увенчались открытием в 1831 г. явления электромагнитной индукции. Фарадей детально изучил это явление, вывел его основной закон, выяснил зависимость индукционного тока от магнитных свойств среды, исследовал явление самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; это явление лежит, например, в основе работы всех генераторов постоянного и переменного тока. Идеи Фарадея об электрическом и магнитном полях оказали большое влияние на развитие всей физики.

11 Томас Дэвенпорт. Томас родился 9 июля 1802 года на ферме близ города Вильямстаун в штате Вермонт. Единственным средством обучения Томаса было самообразование. Он приобретает журналы и книги, чтобы быть в курсе последних достижений инженерии. Томас изготавливает несколько собственных магнитов и проводит с ними эксперименты, в качестве источника тока используя гальваническую батарею Вольта. Создав электромотор, Дэвенпорт строит модель электровоза, двигающегося по круговой дорожке диаметром 1,2 м и питающегося от стационарного гальванического элемента. Изобретение Дэвенпорта получает известность, пресса провозглашает революцию в науке. Американский кузнец, изобретатель. В 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году получил патент на электромагнитную машину.

12 Б. С. Якоби. Якоби Борис Семенович немец по происхождению, ( ). Что же касается Бориса Семеновича Якоби, то его научные интересы были связаны главным образом с физикой и особенно с электромагнетизмом, причем ученый всегда стремился найти практическое применение своим открытиям. В 1834 году Якоби изобрел электродвигатель с вращающимся рабочим валом, работа которого была основана на притягивании разноименных магнитных полюсов и отталкивании одноименных. В 1839 году Якоби вместе с академиком Эмилием Христиановичем Ленцем ( ) построил два усовершенствованных и более мощных электродвигателя. Один из них был установлен на большой лодке и вращал ее гребные колеса. Важное значение для России имели труды Якоби, касающиеся организации электротехнического образования. В начале 1840-х годов он составил и прочитал первые курсы прикладной электротехники, подготовил программу теоретических и практических занятий.

13 Классификация ДПТ классифицируют по виду магнитной системы статора: с постоянными магнитами; с электромагнитами: – с независимым включением обмоток (независимое возбуждение); – с последовательным включением обмоток (последовательное возбуждение); – с параллельным включением обмоток (параллельное возбуждение); – со смешанным включением обмоток (смешанное возбуждение): с преобладанием последовательной обмотки; с преобладанием параллельной обмотки; Вид подключения обмоток статора существенно влияет на тяговые и электрические характеристики электродвигателя.

14 Применение Краны различных тяжёлых производств Привод, с требованиями регулировки скорости в широком диапазоне и высоким пусковым моментом Тяговый электропривод тепловозов, электровозов, теплоходов, карьерных самосвалов и пр. Электрические стартёры автомобилей, тракторов и др. Для уменьшения номинального напряжения питания в автомобильных стартёрах применяют двигатель постоянного тока с четырьмя щётками. Благодаря этому эквивалентное комплексное сопротивление ротора уменьшается почти в четыре раза. Статор такого двигателя имеет четыре полюса (две пары полюсов). Пусковой ток в автомобильных стартёрах около 200 ампер. Режим работы кратковременный.

15 Достоинства: простота устройства и управления; практически линейные механическая и регулировочная характеристики двигателя; легко регулировать частоту вращения; хорошие пусковые свойства (большой пусковой момент); компактнее других двигателей (если использовать сильные постоянные магниты в статоре); так как ДПТ являются обратимыми машинами, появляется возможность использования их как в двигательном, так и в генераторном режимах.

16 Недостатки : дороговизна изготовления; необходимость профилактического обслуживания коллекторно-щёточных узлов; ограниченный срок службы из-за износа коллектора. (Последние два недостатка на современном этапе развития ДПТ почти не ощутимы).

17 Фото различных электродвигателей.

18 Вывод: Электродвигатели играют огромную роль в нашей современной жизни, не будь электродвигателя не было бы света (применение в качестве генератора),не было бы дома воды так как электродвигатель используется в насосе, люди не могли бы поднимать тяжелые грузы (использование в различных подъемных кранах) и т.д.

Ссылка на основную публикацию
Adblock
detector