Электро схема запуска электро двигателя
Электро схема запуска электро двигателя
Здравствуйте уважаемые посетители сайта electromontaj-st.ru. В сегодняшней статье рассмотрим схему подключения магнитного пускателя, обеспечивающую реверс вращения электрического двигателя.
Данная схема применяется в основном там, где необходимо вращение электродвигателя в разные стороны, например в лифтах, подъёмных кранах и т.п.
Данная схема только на первый взгляд выглядит сложнее схемы с одним пускателем, но это только первое впечатление. В данной статье будет пошагово рассмотрена работа схемы.
Прежде всего, давайте подробно рассмотрим представленную реверсивную схему подключения электродвигателя с управляющими катушками на 220В .
- Питание электродвигателя производится от фаз А, В, С, питание цепи управления производится от вазы С.
- Защита электродвигателя и цепи управления осуществляется трёх полюсным автоматическим выключателем.
- Защита от перегрузок производится тепловым реле Р.
- Изменения направления вращения трёхфазного электродвигателя производится сменой чередования фаз для этого служат магнитные пускатели КМ1 и КМ2.
- Вращение электродвигателя в одном направлении обеспечивает магнитный пускатель КМ1, обеспечивая чередование фаз А, В, С.
- Изменение направления вращения обеспечивает магнитный пускатель КМ2 с чередованием фаз С, В, А.
- Управляющие катушки магнитных пускателей одной стороной подключены к нулевому рабочему проводнику N, а другой стороной через кнопочный пост к фазе C.
Управление вращением производится через кнопочный пост, состоящий из трёх кнопок:
1. Кнопка «Вперёд» имеет нормально разомкнутое состояние
2. Кнопка «Назад» имеет нормально разомкнутое состояние
3. Кнопка «Стоп» имеет нормально замкнутое состояние
Кнопки «Вперёд» и «Назад» дополнительно шунтируются через нормально разомкнутые контакты пускателей КМ1 и КМ2. Также кнопки питания «Вперёд» и «Назад» запитаны через нормально замкнутые контакты КМ1 и КМ2, назначение этих контактов предотвращать ошибочное включение кнопок «Вперёд» и «Назад» минуя кнопку «Стоп». То есть запуск электродвигателя в любую сторону возможен только через кнопку «Стоп» т.е. остановку.
Давайте теперь рассмотрим работу данной схемы
Переведём трёхполюсной автомат в положение включено
Запустим электродвигатель ВПЕРЕД
При нажатии кнопки «Вперёд» подаётся напряжение на обмотку магнитного пускателя КМ1, якорь магнитной катушки втягивается, замыкая силовые контакты КМ1 и нормально открытый контакт КМ1, шунтирующий кнопку «Вперёд». Именно благодаря этому контакту после отпускания кнопки «Вперёд» обмотка пускателя остаётся запитана.
Одновременно с этим нормально замкнутый контакт КМ1 обесточивает кнопку «Назад», тем самым делая невозможным запуск двигателя в обратном направлении.
Питание на двигатель подаётся через магнитный пускатель КМ1 с чередованием фаз А, В, С, электродвигатель вращается вперёд.
Остановка двигателя при вращении «Вперёд»
Остановка двигателя, а так же запуска двигателя в другую сторону производится через нажатие кнопки «Стоп». Так как кнопка стоп является нормально замкнутой, нажатие на неё размыкает контакты, тем самым обесточивая цепи управления. Управляющие нормально замкнутые и нормально открытые, а также силовые контакты магнитного пускателя под действием пружин возвращаются в исходное положение, обесточивая двигатель. Двигатель останавливается. Схема возвращается в исходное положение.
Реверс электродвигателя
Запустим электродвигатель НАЗАД
При нажатии кнопки «Вперёд» подаётся напряжение на обмотку магнитного пускателя КМ2, якорь магнитной катушки втягивается, замыкая силовые контакты КМ2и нормально открытый контакт КМ2, шунтирующий кнопку «Вперёд». Именно благодаря этому контакту после отпускания кнопки «Вперёд» обмотка пускателя остаётся запитана.
Одновременно с этим нормально замкнутый контакт КМ2 обесточивает кнопку «Вперёд», тем самым делая невозможным запуск двигателя в обратном направлении.
Питание на двигатель подаётся через магнитный пускатель КМ2 с чередованием фаз С, В, А, электродвигатель вращается вперёд.
Остановка двигателя при вращении «Назад»
Остановка двигателя, а так же запуска двигателя в другую сторону производится через нажатие кнопки «Стоп». Так как кнопка стоп является нормально замкнутой, нажатие на неё размыкает контакты, тем самым обесточивая цепи управления. Управляющие нормально замкнутые и нормально открытые, а также силовые контакты магнитного пускателя под действием пружин возвращаются в исходное положение, обесточивая двигатель. Двигатель останавливается. Схема возвращается в исходное положение.
Материалы, близкие по теме:
Принципиальная Электрическая Схема Электродвигателя
Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя V через резистор Rт и переводу двигателя в режим динамического торможения.
Отключите конденсатор, и запустите мотор вручную: если он перестанет нагреваться — необходимо уменьшить конденсаторную емкость. У рабочей обмотки его значение всегда меньше около 12 Ом , чем у пусковой обычно около 30 Ом.
К примеру, реле времени. В случае необходимости такие электродвигатели могут также подключаться с помощью переходных конденсаторов к однофазной сети.
Подключение электродвигателя от старой стиральной машинки через конденсатор.
Анимация процессов, протекающих в схеме с двумя пускателями показана ниже. Это энергия рассеивается как тепло.
Кроме того, схема управления обеспечивает и нулевую защиту от исчезновения снижения напряжения сети контакторы КМ1 и КМ2.
Такой домен мог бы стоить не одну тыс. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.
Если нужна задержка просто добавь в схему нужный тебе элемент. Подключение однофазного асинхронника Устройство асинхронного электродвигателя на В приведено на схеме.
Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.
Принцип работы синхронного электродвигателя
Нереверсивная схема управления асинхронного двигателя.
Схема показана на рис. Такие электродвигатели допускают два вида подключений коммутацией — в виде звезды или треугольника. Чтобы проверить работоспособность двигателя, следует включить его сначала на 1 минуту, а затем дать поработать около 15 минут. При необходимости смены направления вращения необходимо нажать на кнопку SB1 «Стоп», двигатель остановится и после этого при нажатии на кнопку SB3 двигатель начинает вращаться в другую сторону.
Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.
Такой режим работы называют «толчковым».
В случае необходимости такие электродвигатели могут также подключаться с помощью переходных конденсаторов к однофазной сети. Нереверсивная схема управления асинхронного двигателя.
Линейное напряжение — разность потенциалов между двумя линейными проводами между фазами.
Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме. Главный минус однофазного тока — невозможность генерирования им магнитного поля, выполняющего вращение.
Эта схема рис.
Устройство и принцип работы двигателя постоянного тока. Схема двигателя постоянного тока.
Типовые схемы управления ад с короткозамкнутым ротором
Это поможет вовремя выявить и устранить ошибку до выхода из строя самого прибора.
Интенсивность динамического торможения регулируется резистором Rт, с помощью которого устанавливается необходимый постоянный ток в статоре двигателя.
На всех бытовых приборах, от соковыжималки до шлифовальной машины, установлены механизмы этого типа.
Для того, чтобы после подключения к сети мотор заработал, нужен стартовый толчок. Во время отпускания пусковой кнопки, электромотор из двухфазного режима переходит в однофазный, и его работа поддерживается соответствующей компонентой переменного магнитного поля.
Подключение электромотора с пусковым сопротивлением: Вспомогательная обмотка таких устройств имеет повышенное активное сопротивление. Положительные черты: отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени; высокий момент силы на низкой частоте вращения; простое и динамичное управление. Для питания бытовых приборов и электродвигателей применяется подключение к однофазной сети с напряжением в В.
Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка: Сломанная опора или монтажные щели. Чтобы проверить работоспособность двигателя, следует включить его сначала на 1 минуту, а затем дать поработать около 15 минут. Схема управления асинхронным двигателем с использованием магнитного пускателя рис. После нажатия кнопки SB1 пускатель КМ1 приходит в действие, подавая электроток в цепь статора с включенным сопротивлением. В данной схеме нажатием кнопки реверса меняется чередование фаз питающего напряжения на статоре двигателя, что будет вызывать смену направленности его вращения реверсом.
Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя V через резистор Rт и переводу двигателя в режим динамического торможения. Они удовлетворяют большинству требований к электроприводу станков. Схема обеспечивает прямой без ограничения тока и момента пуск двигателя, отключение его от сети, а также защиту от коротких замыканий предохранители FА и перегрузки тепловые реле КК. Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка: Сломанная опора или монтажные щели.
Схема управления АД с использованием реверсивного магнитного пускателя В схеме предусмотрена защита от перегрузок двигателя реле КК и коротких замыканий в цепи статора автоматический выключатель QF и управления предохранители FА. Однофазные варианты электродвигателей намного проще и не столь критичны, если допущены ошибки в определении полярности или емкости конденсатора. Начало вращения в асинхронных двигателях с трехфазной обмоткой статора происходит автоматически, благодаря чередованию фаз Как видно на структурной схеме, в коллекторном электродвигателе имеются рабочая и пусковая обмотки. Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.
Тепловая защита электродвигателя. Электротепловое реле
Что такое коллекторный двигатель?
Также действуют защиты, аналогичные описанным ранее.
Более экономичной является схема подключения электродвигателя с конденсатором.
И без понимания принципа работы агрегата никакого совета не могу вам дать. Для этого выполняют подключение, как на схеме. Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме.
Асинхронные двигатели обладают невысоким стартовым моментом вращения, поэтому для запуска приходится прибегать к подключению по схеме дополнительных устройств в виде реле пускателя, балластного сопротивления или мощных конденсаторов. Данная схема дает возможность производить запуск электродвигателя и изменять направленность его вращения. К такой сети можно подключить и трехфазный двигатель на В. Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.
При некотором значении тока в роторе, равном току отпускания реле КА, оно отключится и своим размыкающим контактом замкнет цепь питания контактора КМ2. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила.
Но, в любом случае, при первом запуске стоит обращать внимание на нагрев корпуса и пусковых устройств, а также развиваемые электродвигателем обороты. То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки. Схема подключения обычно дается прямо на корпусе, где маркируются выводящие провода пусковой и рабочей обмотки. Запустить Вращающееся магнитное поле пронизывающее короткозамкнутый ротор Магнитный момент действующий на ротор Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. При некотором значении тока в роторе, равном току отпускания реле КА, оно отключится и своим размыкающим контактом замкнет цепь питания контактора КМ2.
Схема управления пуском и торможением противовключением АД с фазным ротором Включение двигателя производится нажатием кнопки SВ1, после чего включается контактор КМ1. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Пришлось ещё net добавить.
В то же время питание поступает и на реле времени КТ. Значения КПД, мощности и пускового момента, у однофазных моторов существенно ниже, чем у трехфазных устройств тех же размеров. Далее берем оставшийся третий вывод и через него меряем поочередно, как по схеме, сопротивления на первой и второй клемме. Управление запуском асинхронного двигателя простейшее, достаточно нажать кратковременно на кнопку пускателя, и мотор начнет работу. Это означает, что подключить его можно в бытовую розетку.
Компрессор со-7б 220v.схема подключения
Электрическая схема магнитного пускателя, контактора, самый простой вариант.
Это простейшая схема пускателя (упрощенный вариант), которая лежит в основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко, как в промышленности, так и в обычном быте. Плох тот электрик, который не знает данной схемы (как ни странно, но есть и такие люди). Хоть Вы, возможно, конечно знаете принцип её работы, но для освежения памяти или для новичков все же опишу вкратце эту работу. И так, вся схема кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке или в специальной коробке (ПМЛ).
Кнопки ПУСКА и СТОПА, могут находится как на передней стороне этого щитка, так в не его (монтируются на месте, где удобно управлять работой), а может быть и там и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.
А теперь о принципе работы: на клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя (ПМ) и замыкания его контактов ПМ1, ПМ2 и ПМ3. Для срабатывания ПМ, необходимо подать на его обмотку напряжение (кстати, величина его зависит от самой катушки, то есть, на какое именно напряжение она рассчитана. Это так же зависит от условий и места работы оборудования. Они бывают на 380в, 220в, 110в, 36в, 24в и 12в) (данная схема рассчитана на напряжение 220в, поскольку берётся с одной из имеющихся фаз и нуля).
Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи: С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт самозадхвата ПМ4 (магнитного пускателя). С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле. Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска, продолжать работу и не отключить магнитный пускатель (называется самозадхватом). Для остановки электродвигателя, требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся, и работа будет остановлена до следующего запуска ПУСКа.
Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузки электродвигателя, соответственно повышается ток, и двигатель резко начинает нагреваться, вплоть до выхода из строя. Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП. Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузки в оборудовании, на котором работает электродвигатель. Хотя и не редко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д. Думаю для тех, кто этого не знал, данная статья, электрическая схема магнитного пускателя, упрощенный вариант, была весьма полезна и однажды не раз пригодится в жизни. Ну а пока на этом всё.
Видео по этой теме:
Схемы подключения трехфазного электродвигателя
1. Подключение трехфазного электродвигателя – общая схема
Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.
Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что пускатель и контактор – это разные вещи. Что поделать, приелось это название.
В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.
Будут рассмотрены различные схемы подключения электродвигателей , их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.
Подключение трехфазного двигателя
Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.
Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.
По принципам построения сетей 380В я уже подробно писал в статьях про трехфазный счетчик и реле напряжения.
В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?
2. Подключение двигателя через рубильник или выключатель
Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.
Подробнее про замену и установку автоматических выключателей – здесь. А про их параметры и выбор – здесь.
Схема подключения трехфазного двигателя в сеть через автоматический выключатель
Поэтому более подробно общий случай будет выглядеть так:
3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА
На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.
Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.
Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.
Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).
Она прекрасно работает, так же, как по многу лет может работать скрутка меди с алюминием. И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.
Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.
Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.
Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –
- Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
- Невозможность дистанционного и автоматического включения/выключения двигателя.
Эти недостатки можно устранить, в схемах ниже будет показано как.
Подключение трехфазного двигателя через ручной пускатель
4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА
Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.
Ручной пускатель двигателя с дополнительным контрольным контактом.
Вот что у него на боковой стенке:
Автомат защиты двигателя – характеристики на боковой стенке
Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.
В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.
Плюс схемы – можно регулировать уставку теплового тока. Минус тот же, что и в предыдущей схеме – нет дистанционного включения.
Схема подключения двигателя через магнитный пускатель
Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.
Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.
Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “ Пуск ” и “ Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.
Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0. Про выбор, устройство и характеристики электромагнитных пускателей (контакторов) – прочитайте здесь.
5. Схема подключения двигателя через пускатель с кнопками пуск стоп
Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).
Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.
Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.
Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью Схемы подключения магнитного пускателя. Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.
Подключение трехфазного двигателя через электронные устройства
Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.
Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:
- Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. Вот моя статья.
- Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему есть статья. Практическое применение устройств плавного пуска – здесь.
- Частотные преобразователи – самое совершенное устройство, что придумало человечество для подключения электродвигателя. Описывать частотники – дело не одной статьи.
Преимущества таких устройств очевидны (прежде всего – отсутствие контактов как таковых), недостаток пока один – цена. А вот как может выглядеть схема их включения:
10. Подключение трехфазного двигателя – общая схема с электронной силой
Двухскоростные электродвигатели
Старый специфический способ подключения двухскоростных двигателей описан в статье Подключение двухскоростных асинхронных двигателей.
На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!
Скачать
Если тема интересует более глубоко, рекомендую ознакомиться с литературой, приведенной на странице Скачать.
Вот одна из книг, приведенных там:
• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 1938 раз./
• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1548 раз./
Как подключить многоскоростной асинхронный электродвигатель
Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором
Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором
Треугольник(или звезда)\ двойная звезда —— Д/YY.
Низшая скорость — Д(треугольник(или звезда Y ): 750 об/мин
2U, 2V, 2W свободны, на 1U, 1V, 1W подается напряжение.
Высшая скорость — YY. 1500 об мин.
1U, 1V, 1W замкнуты между собой, на 2U, 2V, 2W подается напряжение
Двухскоростные двигатели имеют одну полюсопереключаемую обмотку с шестью выводными концами. Обмотка двигателей с соотношением частот вращения 1 : 2 выполняется по схеме Даландера и соединяется в треугольник Д (или в звезду Y) при низшей частоте вращения и в двойную звезду (YY) при высшей частоте вращения Схема соединения обмоток показана на рисунке.
Средняя скорость. 1000 об мин.
Обмотка на 1000 об мин подключается независимо от остальных своим пускателем, не участвующим в схеме Даландера.
Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения для схемы Даландера.
Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть:
Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3.
Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3.
Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости.
Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей.
Предохранитель F5, для защиты цепей контроля.
Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2.
Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой:
а) запуск и остановка на маленькой скорости (PV).
Запуск путем нажатия на S1.
Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником.
Автопитание через (К1, 13–14).
Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы.
Остановка путем нажатия на S0.
б) запуск и остановка на большой скорости (GV).
Запуск путем нажатия на S2.
Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1.
Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду.
Автопитание через (К2, 13–14).
Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3.
Остановка путем нажатия на S0.
Вспомогательные контакты системы кнопок (S1 и S2, 21–22)действуют как защитные двойные шторки системы кнопок в том случае, если на оба прерывателя попытаются нажать одновременно, чтобы никакой из контакторов не активизировался и эти контакты можно было бы убрать в том случае, если есть защитные шторки механического типа между К1 и К2.