Электро схемы блокировки двигателя

Ещё один способ усовершенствования схемы включения стартера.

В статье «Усовершенствование схемы включения стартера», я написал как можно улучшить заводскую схему включения и блокировки стартера (статью находим вот тут), и описал недостатки заводской схемы, перед которыми переделка имеет ощутимые преимущества. В этой стате я опишу ещё один несложный способ улучшения заводской схемы включения и блокировки стартера, который легко осуществить своими силами, но кто вообще не дружит с электрикой, то может попросить это сделать любого электрика.

В первой статье была задействована лампа давления масла, а в этой стате, я опишу как задействовать лампу заряда жигулёвского генератора, модели 37.3701. Но на других машинах, с генератором подобной схемы (у которых имеется вывод для контрольной лампы), это тоже возможно осуществить.

Схема усовершенствования заводской схемы включения и блокировки стартера.
1 — батарея, 2 — генератор, 3 — замок зажигания, 4 — вольтметр, 5 — лампа заряда генератора, 6 — электростартер, 7 — реле включения стартера, 8 — реле блокировки стартера.

На электросхеме, помещённой слева, наглядно показана схема включения реле блокировки стартера, реле под цифрой 8, и это реле будет блокировать электростартер 6. Работает схема следующим образом. Когда запустится двигатель автомобиля, в точке под цифрой 1 появится напряжение, и от этого напряжения сработает реле 8, контакты К 1.1 которого разомкнутся, и электростартер сразу отключится, несмотря на замкнутые контакты 50 и 30 замка зажигания.

Причём повторное включение электростартера, смыканием контактов 50 и 30 при работающем двигателе будет исключено. Благодаря этому получается осуществить одновременно два условия — в момент, когда мотор заводится, происходит автоматическое выключение электростартера и невозможность включения стартера при уже работающем двигателе (блокировка стартера).

К тому же следует учесть, что если вдруг в пути генератор перестанет работать (например порвётся ремень его привода), и реле блокировки 8 не будет работать, то это никак не повлияет на запуск и работу мотора машины. Только не будет работать блокировка стартера, но в момент выхода из строя генератора, естественно водитель будет более внимательным и не допустит включения стартера при работающем двигателе. Тем более, что генератор или его ремень, сразу же восстанавливаются водителем по приезду в гараж, иначе на батарее долго не проездишь.

Эта схема удобнее механической блокировки стартера, так как если двигатель вдруг не завёлся, то не нужно в таком случае возвращать ключ зажигания назад, в третье положение — СТОЯНКА.

Чтобы установить реле блокировки 8, недалеко от дополнительного реле включения электростартера 7, потребуется несколько минут, а для реле блокировки 8 можно использовать почти любое реле с нормально замкнутыми контактами, к примеру под номером 112,3747.

Если же будет использоваться реле с нормально разомкнутыми контактами, то его вывод под номером 85, нужно будет подключить не к массе замка зажигания, а к его выводу под номером 15.

Такой способ усовершенствования электро-схемы включения и блокировки стартера, имеет ряд преимуществ перед заводской схемой, и эти преимущества я описал в первой статье (ссылка в начале текста), удачи всем.

Схемы автоматической блокировки и сигнализации

В
многодвигательных приводах определенная последовательность включения,
выключения, реверсирования, регулирования и торможения различных
двигателей обычно обеспечивается при помощи блокировочных связей между
цепями управления отдельных, электродвигателей. Приведем несколько схем автоматической блокировки, используемых при управлении двумя двигателями с короткозамкнутыми роторами. По
схеме рисунке пуск одного двигателя исключает возможность включения
другого …

В многодвигательных приводах определенная последовательность включения, выключения, реверсирования, регулирования и торможения различных двигателей обычно обеспечивается при помощи блокировочных связей между цепями управления отдельных, электродвигателей.

Приведем несколько схем автоматической блокировки, используемых при управлении двумя двигателями с короткозамкнутыми роторами.

По схеме рис.1, а пуск одного двигателя исключает возможность включения другого, что обеспечивается блок-контактами К1 и К2, размыкающимися при срабатывании контактора другого двигателя. Та же схема может быть использована для раздельного дистанционного управления каждым двигателем без взаимной блокировки. Для этого двухпозиционный переключатель SM должен быть поставлен в правое положение, когда замкнуты обе пары контактов 1 и 2, шунтирующие блок-контакты К1 и К2.

По схеме рис. 1, б первый двигатель (на рисунке не показан) включается нажатием пусковой кнопки SB1. Вместе с ним автоматически включается и второй двигатель. Но второй двигатель нельзя включить при неработающем первом. Включение одного из двигателей вызывает немедленный останов другого двигателя. При автоматической работе переключатель SM устанавливают в левое положение, при котором контакты 1 и 3 замкнуты, а при раздельном управлении переключатель ставится в правое положение, когда замкнуты контакты 2 и 4.

Рис.1. Схемы блокировки двух асинхронных двигателей: а — блокировки исключения; б и в — зависимой блокировки; гид — при совместной работе двух двигателей

По схеме рис.1, в включение двигателей осуществляется поочередно: сначала первого двигателя кнопкой SB1, а затем второго двигателя кнопкой SB2. Возможна работа первого двигателя отдельно, но второй двигатель может работать только совместно с первым. Схема управления пуском значительно упрощается, если двигатели должны работать только совместно.

Читать еще:  Что такое трансформаторы и двигатели

По схеме рис.1, г это обеспечивается двумя контакторами и общей пусковой кнопкой, а в схеме рис.1, д — общим контактором. Во всех приведенных схемах останов двигателей производится соответствующими кнопками SB.

Как бы ни была рационально составлена схема управления двигателями, следует иметь в виду возможность отказов в работе отдельных ее элементов. Надежность в работе зависит не только от качества аппаратуры и ее монтажа, но и от построения схемы управления, поэтому необходимо предусматривать различного рода сигнализации о режимах работы схемы и избегать аварийные режимы. Для исключения самопроизвольного продолжения работы после восстановления напряжения без повторного включения схемы оператором предусматривается информационная сигнализация (рис.2). Несмотря на простоту варианта рис.2, а, он может дать ложный сигнал при перегорании лампы.

Более надежным является вариант рис.2,б так как при перегорании любой из двух ламп он не даст ложной информации. Если в схеме имеются свободные контакты, то вариант рис.2, в является более надежным. Сигнал о восстановлении напряжения при наличии реле напряжения KV можно обеспечить по схеме рис.2, г. Повторное включение после снятия напряжения производится пусковой кнопкой SB. Обрыв цепи катушек реле или контактора не должен быть причиной неверных срабатываний, поэтому в управляющие цепи нельзя включать размыкающие контакты, замыкающиеся при обрыве цепи катушки.

В схеме рис.2, д используется реле контроля КА тока в обмотках ответственных узлов, которое включается параллельно катушке контактора К. Сигнал обрыва в катушке К показывает лампа HL. В случае залипания якоря контактора К при снятии напряжения сигнал о том, что контактор остался включенным, обеспечивается загоранием лампы HL1.

Один из вариантов схемы звуковой сигнализации показан на рис.2, е. По этой схеме осуществляется контроль исправной работы четырех двигателей. После пуска всех четырех двигателей сигнализация в этой схеме автоматически подготавливается к включению. При этом замыкающий контакт четвертого двигателя К4 включает реле подготовки звукового сигнала KV, а размыкающие контакты на участке аb размыкаются. Замыкаются при этом контакты самоблокировки и блокировки реле KV.

При перегрузке, например, одного из двигателей на участке аb замкнется один из размыкающихся контактов и немедленно включится аварийный звуковой сигнал НА. Чтобы снять звуковой сигнал, нажимают кнопку SB, включенную последовательно с НА, при этом размыкается цепь реле KV и его контакты KV. Нажатием кнопки SB1 осуществляется автоматический останов двигателей, при этом включается реле автоматического останова КН.

Рис. 2. Схемы сигнализации: а, б, в — примеры информационной сигнализации; г и д — с реле напряжения и контроля; е, ж — аварийной

Реле КН своим размыкающим контактом отключит цепь питания катушек контакторов K1 К2, КЗ и К4 (контакторы на схеме не показаны), а другим контактом КН обесточит реле KV, которое отключит звуковую сигнализацию НА. Для проверки исправности звукового сигнала нажимают кнопку SB.

Для контроля верхнего и нижнего уровней стружки в бункере при производстве древесностружечных плит может быть применена звуковая сигнализация, изображенная на рис.2, ж. Когда стружка достигнет верхнего уровня бункера, включится реле KSL, и его замыкающий контакт включит звуковой сигнал НА. При снижении стружки в бункере ниже установленного уровня замкнется контакт реле низкого уровня RSL1 и включит звуковой сигнал.

Нажатием кнопки SB снимают звуковой сигнал. Кнопка SB включит реле снятия сигнала KV, а его размыкающий контакт отключит сигнализацию НА. Реле KV останется включенным через контакт самоблокировки до снятия напряжения в цепи управления. Нажатием кнопки SB1 проверяется исправность звуковой сигнализации.

На рис. 3 приведена схема электрической сигнализации двух технологических параметров.

Рис. 3. Схема сигнализации

При отклонении от нормы одного из них, например, первого, замыкается технологический контакт S1, расположенный в соответствуюшем измерительном приборе или сигнализаторе. При этом включается реле 1К, которое своим переключающим контактом 1К1 включает сигнальную лампу HL1 и отключает ее от кнопки опробования сигнализации SB3.

Одновременно замыкающий контакт 1К2 реле 1К через размыкающий контакт ЗК2 выключенного реле 3К включает звонок НА. Включается звонок кнопкой съема звуковой сигнализации SB1, при нажатии которой реле 3К через свой замыкающий контакт 3X7 становится на самоблокировку, размыкающим контактом отключается звонок.

Если при таком состоянии схемы замыкается второй технологический контакт S2, то при снятом звуковом сигнале загорается лишь сигнальная лампа HL2, а звуковой сигнал не будет подан. В исходное состояние схема придет после размыкания обоих технологических контактов S1 и S2, что вызывает отключение всех реле. Кнопки SB2 и SB3 предназначены для опробования звонка и сигнальных ламп.

10.12.2016 Без рубрики Нет комментариев

Типовые схемы управления

Для управления силовым электрооборудованием в электрических цепях используют разнообразные устройства дистанционного управления, защиты, телемеханики и автоматики, воздействующие на коммутационные аппараты его включения и отключения или регулирования.

На рис.5.4 приведена принципиальная схема управления асинхронным электродвигателем с короткозамкнутым ротором. Данная схема широко используется на практике при управлении приводами насосов, вентиляторов и многих других.

Читать еще:  Датчик температуры двигателя для шевроле авео

Перед началом работы включают автоматический выключатель QF. При нажатии кнопки SВ2 включается пускатель КМ и запускается двигатель М. Для остановки двигателя необходимо нажать кнопку SВ1, при этом отключаются пускатель КМ и двигатель М.

Рис.5.4. Схема включения асинхронного электродвигателя с короткозамкнутым ротором

При перегрузке электродвигателя М срабатывает электротепловое реле КК, размыкающее контакты КК:1 в цепи катушки КМ. Пускатель КМ отключается, двигатель М останавливается.

В общем случае схемы управления могут осуществлять торможение электропривода, его реверсирование, изменять частоту вращения и т.д. В каждом конкретном случае используется своя схема управления.

В системах управления электроприводами широко используются блокировочные связи. Блокировкой обеспечивают фиксацию определенного состояния или положения рабочих органов устройства или элементов схемы. Блокировка обеспечивает надежность работы привода, безопасность обслуживания, необходимую последовательность включения или отключения отдельных механизмов, а также ограничение перемещения механизмов или исполнительных органов в пределах рабочей зоны.

Различают механическую и электрическую блокировки.

Примером простейшей электрической блокировки, применяемой практически во всех схемах управления, является блокировка кнопки «Пуск» SB2 (рис. 5.4.) контактом КМ2. Блокировка этим контактом позволяет после включения двигателя кнопку SB2 отпустить, не прерывая цепи питания катушки магнитного пускателя КМ, которое идет через блокировочный контакт КМ2.

В схемах реверсирования электродвигателей (при обеспечении движения механизмов вперед-назад, вверх-вниз и т.д.), а также при торможении применяются реверсивные магнитные пускатели. Реверсивный магнитный пускатель состоит из двух нереверсивных. При работе реверсивного пускателя необходимо исключить возможность их одновременно включения. Для этого в схемах предусматриваются и электрическая, и механическая блокировки (рис. 5.5). Если реверсирование двигателя выполняется двумя нереверсивными магнитными пускателями, то роль электрической блокировки играют контакты КМ1:3 и КМ2:3, а механическая блокировка обеспечивается кнопками SВ2 и SВ3, каждая из которых состоит из двух контактов, связанных между собой механически. При этом один из контактов-замыкающий, другой — размыкающий (механическая блокировка).

Схема работает следующим образом. Предположим что при включении пускателя КМ1 двигатель М вращается по часовой стрелке и против часовой — при включении КМ2. При нажатии кнопки SВ3 сначала размыкающий контакт кнопки разорвет цепь питания пускателя КМ2 и только потом замыкающий контакт SВ3 замкнет цепь катушки КМ1.

Рис.5.5. Механическая и электрическая блокировки при реверсировании привода

Пускатель КМ1 включается, запускается с вращением по часовой стрелке двигатель М. Контакт КМ1:3 размыкается, осуществляя электрическую блокировку, т.е. пока включен КМ1, цепь питания пускателя КМ2 разомкнута и его нельзя включить. Для осуществления реверса двигателя необходимо его остановить кнопкой SВ1, а затем, нажав кнопку SВ2, запустить в обратную сторону. При нажатии SВ2 сначала размыкающим контактом SВ2 разрывается цепь питания катушки КМ1 и далее замыкается цепь питания катушки КМ2 (механическая блокировка). Пускатель КМ2 включается и реверсирует двигатель М. Контакт КМ2:3, размыкаясь, осуществляет электрическую блокировку пускателя КМ1.

Чаще реверсирование двигателя выполняется одним реверсивным магнитным пускателем. Такой пускатель состоит из двух простых пускателей, подвижные части которых между собой связаны механически с помощью устройства в виде коромысла. Такое устройство называется механической блокировкой, не позволяющей силовым контактом одного пускателя КМ1 одновременно замыкаться силовым контактам другого пускателя КМ2 (рис. 5.6).

Рис. 5.6. Механическая блокировка «коромыслом» подвижных частей двух пускателей единого реверсивного магнитного пускателя

Электрическая схема управления реверсом двигателя при помощи двух простейших пускателей единого реверсивного магнитного пускателя такая же, как и электрическая схема управления реверсом двигателя с использованием двух нереверсивных магнитных пускателей (рис. 5.5), с применением в электрической схеме таких же электрических и механических блокировок.

При автоматизации электроприводов поточных линий, конвейеров и т.п. применяется электрическая блокировка, которая обеспечивает пуск электродвигателей линии в определенной последовательности (рис. 5.7). При такой схеме, например, включение второго двигателя М2 (рис. 5.7) возможно только после включения первого двигателя М1, включение двигателя М3 – после включения М2. Такая очередность пуска обеспечивается блокировочными контактами КМ1:3 и КМ2:3.

Рис.5.7. Схема последовательного включения двигателей

Пример 5.1. Используя электрическую схему (рис. 5.4) управления асинхронным электродвигателем с короткозамкнутым ротором, необходимо включить в эту схему дополнительные контакты, обеспечивающие автоматическую остановку электродвигателя рабочего механизма в одной и в двух заданных точках.

Решение. Требование задачи обеспечить остановку электродвигателя в одной заданной точке может быть выполнено путевым выключателем SQ1 с нормально закрытым контактом, установленным последовательно с блок-контактом KM2, шунтирующим кнопку SB2. Для остановки электродвигателя рабочего механизма в двух заданных точках последовательно с контактом путевого выключателя SQ1 размещают контакт второго путевого выключателя SQ2. На рис. 5.8 приведены электрические схемы остановки электродвигателя в одной и в двух заданных точках. После пуска двигателя механизм приходит в движение и при достижении места остановки нажимает на путевой выключатель, например SQ1, и электродвигатель останавливается. После выполнения необходимой технологической операции вновь нажимаем на кнопку SB2, и механизм продолжает движение до следующего путевого выключателя SQ2, где технологическая операция заканчивается.

Читать еще:  Что считается перегревом двигателя

Рис. 5.8 К примеру 5.1

Пример 5.2. В электрическую схему (рис. 5.5) управления реверсом короткозамкнутого асинхронного двигателя с помощью блокировочных связей следует ввести элементы световой сигнализации для контроля направления вращения двигателя.

Решение. Схема световой сигнализации контроля направления вращения двигателя при реверсе, совмещённая со схемой управления реверсом двигателя, приведена на рис. 5.9. При вращении двигателя, например вправо, горит лампа HL1, включаемая контактом KM1.4 магнитного пускателя KM1, при этом лампа HL2 погашена, т.к. магнитный пускатель KM2 не включён. При вращении двигателя влево горит лампа HL2, включённая контактом KM2.4 магнитного пускателя KM2. Таким образом, лампа HL1 сигнализирует о вращении двигателя вправо, а лампа HL2 — о вращении двигателя влево. В результате блокировочными связями световая сигнализация обеспечивает контроль над направлением вращения двигателя при реверсе.

Рис. 5.9 К примеру 5.2

1. Как подразделяются электрические схемы по видам и типам?

2. Каковы основные правила построения электрических схем?

3. Приведите примеры буквенного обозначения электрических элементов.

4. Приведите примеры графического обозначения электрических элементов.

5. Нарисуйте схемы включения двигателя, приведенные на рис. 5.1, 5.2 и 5.4.

6. Объясните работу схем на рис. 5.5 и 5.7.

Дата добавления: 2019-02-08 ; просмотров: 1622 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Релейная защита и блокировка электродвигателей

Релейной защитой называют комплекс, состоящий из реле и других аппаратов, соединенных в определенные электрические схемы, которые должны реагировать на нарушения нормального режима работы участка электрической цепи и посылать импульсы для отключения находящегося в этой цепи выключателя или автомата.

Устройства релейной защиты должны обладать чувствительностью и быстротой действия, обеспечивающими надежность работы электрической установки, а также избирательностью (селективностью) действия. Последнее условие заключается в том, что защита должна обеспечивать отключение только поврежденного участка установки. Например, при коротком замыкании в точке К линии (рис.) выключатель В1 должен отключить поврежденный участок, но выключатели В3 и В4 не должны реагировать на аварию в точке К.

Рис. Схема селективной защиты

Таким образом, аварийная линия избирательно отключается, а остальные линии продолжают нормально работать.

На рис. показана схема максимальной токовой защиты с использованием вторичного реле косвенного действия.

Рис. Электрическая схема максимальной токовой защиты с реле косвенного действия

Реле косвенного действия непосредственно не оказывают механического действия на выключатель, а подают электрический импульс в отключающую катушку выключателя. Защита представлена на одной фазе с установкой трансформатора тока ТТ и токового реле Р, включенного во вторичную обмотку трансформатора тока. При перегрузке электродвигателя Д ток во вторичной обмотке измерительного трансформатора ТТ, а следовательно, и в катушке реле Р увеличивается. Когда он достигает значения или будет больше тока, на который отрегулировано реле, оно сработает, т. е. контакты реле замкнутся. Тогда в цепь постороннего источника (+ -) включится отключающаяся катушка ОК выключателя, которая непосредственно воздействует на отключающие элементы выключателя В, и двигатель будет отключен от фаз распределительного устройства РУ. Максимальная токовая защита обычно устанавливается на двух фазах. Реле косвенного действия достаточно точны, чувствительны и потребляют небольшую мощность.

Блокировочные связи в схемах управления двигателями являются необходимыми для производств с непрерывным технологическим процессом, который требует строгой последовательности пуска и останова машин и механизмов. Нарушение очередности пуска и останова двигателей может привести к нарушению технологического процесса, порче продукта и авариям. Очередность пуска двигателей должна быть в направлении, обратном потоку продукта, а очередность останова — в противоположном направлении. Блокировочные связи, как правило, осуществляют между цепями управления магнитных пускателей электродвигателей (рис. а).

Рис. Развернутая схема цепей управления двух сблокированных электродвигателей

С этой целью магнитные пускатели имеют дополнительные контакты, жестко связанные с якорем, и служат для включения цепей сигнализации и блокировки.

Сигнальные контакты СК различные — одни (правые) нормально открытые и другие (левые) нормально закрытые. Когда пускатель в нерабочем состоянии (главные контакты ГК разомкнуты, и двигатель не включен), контакты нормально закрытые замкнуты и у диспетчера горит зеленая лампочка 1 (рис. б). При включении пускателя контакты нормально закрытые размыкаются, а контакты нормально открытые замыкаются, гаснет зеленая лампочка и загорается красная 2. Блок-контакты БК служат для оперативного связывания работы нескольких машин и механизмов. Если включить блок-контакт БК пускателя двигателя № 1 в цепь управления пускателя № 2, то цепь управления ПМ2 не может быть замкнута до тех пор, пока не будет включен ПМ1 и не замкнутся его блок-контакты БК1 (рис. в). Для обеспечения работы двигателя № 2, вне зависимости от работы двигателя № 1, в цепь управления ПМ2 параллельно блок-контактам БК включен рубильник Р деблокировки. Если замкнуть рубильник Р, цепь управления ПМ2 окажется разблокированной и двигатель № 2 может быть включен нажатием кнопки П2 независимо от того, работает или нет двигатель № 1. На пищевых предприятиях, как правило, применяют асинхронные низковольтные двигатели трехфазного тока с короткозамкнутым ротором.

Ссылка на основную публикацию
Adblock
detector