Электромагнит как вечный двигатель

Электромагнит как вечный двигатель

«ВЕЧНЫЙ ДВИГАТЕЛЬ» В ВОПРОСАХ И ОТВЕТАХ ИЛИ «ВНОВЬ О МАГНЕТРОНЕ»

В.И. Коробейников.
Россия elen@mail.infos.ru

Прошел практически год со дня публикации статьи «Как правильно рассчитывать КПД «вечных двигателей». Статья вызвала очень много откликов. В них много удивления и нет достаточного понимания происходящего. Одним из самых главных «козырей» у оппонентов было то, что в типовых и очень популярных бытовых микроволновых печах магнетрон никак не демонстрирует того, что он является «вечным двигателем». Счетчик электроэнергии «видит» работающий магнетрон в микроволновых печах и очень хорошо «видит», показывая это своим быстрым вращением. Все это правильно. Именно так все и происходит. Вот отсюда и начинаются наиболее интересные и довольно непонятные вещи для оппонентов. Почему же магнетрон в бытовых микроволновых печках не демонстрирует того, что он является одним из самых древних РАБОТАЮЩИХ (с 1937 года) представителей «вечных двигателей» в официальной науке?

Для дальнейшего изложения материала необходимо вновь напомнить об основных принципах работы магнетрона.
В работе магнетрона используется важный случай движения электронов при наличии двух полей — магнитного и электрического, перпендикулярных друг другу. Магнетрон представляет собой двухэлектродную лампу или диод, содержащий накаливаемый катод и холодный анод и помещаемый во внешнее магнитное поле. Отметим, что анод (анодный блок) магнетрона имеет довольно сложную монолитную конструкцию с системой резонаторов. Магнитное поле создается либо катушками с током (электромагнит), либо постоянным магнитом, между полюсами которого помещается магнетрон. Если бы магнитного поля не было, то электроны, вылетающие из катода практически без начальной скорости, двигались бы в электрическом поле вдоль прямых линий, перпендикулярных к катоду, и все попадали бы на анод. При наличии магнитного поля траектории электронов искривляются силой Лоренца. Если магнитное поле достаточно велико, то траектории электронов не пересекают плоскости анода. В этом случае ни один электрон не достигает анода. Траектории движения электронов в магнетроне изображены на Рис.1.

Траектория электрона есть циклоида, описываемая точкой, лежащей на окружности круга, равномерно катящегося по катоду. При прохождении циклоидного потока электронов мимо щелей резонаторов анодного блока, в них возбуждаются мощные электромагнитные СВЧ колебания. Высокочастотная энергия из прибора обычно выводится с помощью петли или отверстия связи, помещенных в периферийной части одного из резонаторов анодного блока. Отметим, что магнетрон разрабатывался как мощный генератор электромагнитных колебаний СВЧ диапазона. Вышеизложенное является лишь очень кратким напоминанием полной теории магнетрона, которая включает в себя практически всю электрофизику.

Итак, что же вызвало непонимание и недоверие к тому, что магнетрон является «вечным двигателем»? Наибольшее непонимание исходило от некоторых «профессионалов», эксплуатирующих магнетроны в радиолокационных станциях (РЛС).
Это же относится и к большинству массовых пользователей бытовых СВЧ печей. При каких условиях магнетрон становится «вечным двигателем»? В том случае, когда выполняется равенство

U / B2 = q . ∆2 / 2m .

Это равенство = очень важно. Оно означает условия, когда электроны, вылетевшие из катода, не могут попасть на анод и, соответственно, замкнуть цепь анодного источника. Процесс идет, а закон Ома не работает (анодная цепь разомкнута). В большинстве приборов магнетроны работают в импульсном режиме. Что это значит? Это означает, что анодное напряжение на магнетроне импульсное, с определенным периодом, меняется от 0 до максимального значения и обратно. В бытовых СВЧ печках импульсное напряжение меняется от 0 до 2000-3000 вольт и обратно до 0. Импульсы идут с частотой 50 Герц. Будет равенство U / B2 = q . ∆2 / 2m выполняться?
Нет, за исключением одной (двух) точек во время действия импульса.

На Рис.2 показана схема включения магнетрона в бытовой СВЧ печи. На высоковольтном диоде пульсирующее (импульсное) напряжение, которое и подводится к магнетрону. Что при этом происходит? За время действия импульса напряжения происходит формирование электронно-плазменного облака-ротора в магнетроне и перезаряд высоковольтного конденсатора. Цепь анодного источника оказывается замкнутой (переходные процессы) и работает закон Ома. В бытовых импульсных СВЧ печах анодный ток достигает значений 0,3-0,5 Ампера.

Рис. 2. Схема включения магнетрона в бытовой СВЧ печке

Вот эти импульсные (переходные) процессы очень хорошо «видит» счетчик электроэнергии.
Что надо сделать, чтобы равенство U / B2 = q . ∆2 / 2m постоянно выполнялось? Необходимо перевести работу магнетрона в режим непрерывной генерации. На аноде должно быть не пульсирующее напряжение, а постоянное и такой величины, чтобы равенство U / B2 = q . ∆2 / 2m выполнялось всегда. В этом случае цепь анодного источника окажется разомкнутой, (анодный ток отсутствует), и закон Ома перестанет выполняться. Очень интересная ситуация. Анодный источник работает на холостом ходу, а на выходе магнетрона генерируется СВЧ мощность. Поскольку закон Ома не работает, то счетчик электроэнергии перестает «видеть» работающий и выдающий на выход мощность (энергию) магнетрон. К примеру, у типовых магнетронов со штатными кольцевыми постоянными магнитами, применяемых в бытовых СВЧ печах, анодный ток (2-3 микроампера) появляется при постоянном (не пульсирующем) анодном напряжении 60-65 вольт. При таком значении анодного напряжения говорить о значительной величине «лишней» энергии на выходе неуместно. Такой анодный ток (2-3 мкА) должен появляться при анодном напряжениях в сотни и тысячи вольт. В этом случае на выходе будет мощность в сотни и более ватт. Магнитное поле, и очень большое, должно быть от постоянных магнитов. Электрическое поле — от внешнего источника, а он работает на «холостом ходу». Вот он, «вечный двигатель»!

Как все просто, да не простенько! Необходимо предостеречь читателей от дилетантского подхода в понимании происходящих процессов.
Электронно-плазменное облако-ротор между анодом и катодом очень трудно рассасывается при отключении анодного источника напряжения. Что произойдет в электронно-плазменном роторе магнетрона при отключении анодного напряжения? Именно то, что и происходит в магнетроне при работе в импульсном режиме. Произойдут довольно большие изменения в электронно-плазменном роторе. Какие? Здесь предлагается самим читателям вспомнить или вновь изучить «Теорию движения заряженных частиц в электромагнитных полях». Еще раз напомним, что равенство (рабочая точка)

U / B2 = q . ∆2 / 2m

очень важное на функции-характеристике (Рис.1) магнетрона. Именно эта точка на функции и является для многих непреодолимым барьером в сознании, когда происходит перевод магнетрона из режима подчинения закону Ома в режим не подчинения закону Ома («вечный двигатель»). Усилению непреодолимости этого барьера часто помогает изложение материала и практические занятия по магнетрону в технических университетах. К примеру, в СпбГУ на кафедре «Радиофизики» есть прекрасная лабораторная работа №9 -«Исследование работы магнетронного генератора». В этой лабораторной работе магнетрон работает в импульсном режиме. Для получения (изменения) необходимых выходных параметров выставляется (изменяется) анодный ток магнетрона. Соответственно, изменяют и магнитное поле. Все прекрасно работает и не вызывает недоразумений. Как видим, вольно или невольно, но упор в лабораторной работе сделан на режим работы в положении левее точки равенства U / B2 = q . ∆2 / 2m. В лабораторной работе никак не акцентируется, что можно находиться и справа от этой точки равенства в режиме непрерывной генерации. Нахождение справа от этой точки равенства приведет к совершенно другой лабораторной работе: по исследованию магнетрона как «вечного двигателя».
Уже этого одного примера достаточно, чтобы понять какую пропасть в сознании технических специалистов заложило равенство (рабочая точка) U / B2 = q . ∆2 / 2m.

У большинства авторитетнейших ученых мужей само понятие «вечный двигатель» вызывает в сознании гнев и отторжение как лженаучное понятие. Что это означает? Это означает, что они сами не очень глубоко разобрались с возможностями магнетрона, который может работать как «вечный двигатель».

С 1937 года практически уже третье поколение технических специалистов эксплуатирует магнетроны, а «лженаучная» ситуация в сознании так и не разрешилась. Здесь следует сделать сравнение магнетрона еще с одним «вечным двигателем» -генератор Серла, работающим с 1946 года. Двигающийся по циклоиде электрон здесь является элементарным магнитом, как виток-петля с током или магнитный ролик генератора Серла. Магнитные ролики в генераторе Серла имеют слишком много балласта по массе и габаритам. Это приводит к тому, что генераторы Серла (механический магнетрон) слишком громоздкие и тяжелые. Магнетрон избавлен от балласта в виде тяжелых и больших молекул магнитного материала, поскольку работает на «голых» электронах. Это очень удобно и выгодно. Равенство (точка) U / B2 = q . ∆2 / 2m косвенно связано и с генератором Серла. У магнетрона двигающийся по циклоиде электрон как магнит не должен нарушать указанное равенство. У генератора Серла уже готовые магниты (ролики) должны соблюдать такое же аналогичное электромагнитное равенство. Поэтому невозможно сделать миниатюрный «карманный» генератор Серла на современных магнитах, чтобы выполнялось это конструктивное равенство… но вернемся снова к магнетрону.

Читать еще:  Вредно ли прогревать двигатель на холостых оборотах

В ряде практических ситуаций от магнетрона как от «вечного двигателя» не всегда может требоваться большая СВЧ энергия. В таких случаях ее вообще можно не выводить из магнетрона за ненадобностью. А что же брать от магнетрона в таких случаях? Очень интересный «поворот». Практически любой магнетрон требует воздушного или водяного принудительного охлаждения анодного блока. Уже это указывает на то, какое огромное количество тепла выделяется на анодном блоке. Что мешает использовать это тепло для бытовых нужд? Мешает этому отсутствие на рынке таких магнетронных электронагревательных приборов. Что будет, если такой электронагревательный прибор включить в электрическую сеть? Электрическая сеть будет работать на холостом ходу, а счетчик электроэнергии не будет вращаться. Это только один из возможных вариантов использования магнетрона в непрерывном режиме («вечный двигатель») в качестве бытового электронагревательного прибора, который «отключает» счетчик электроэнергии.

В заключение вопросы ко всем читателям: «Появятся ли на рынке такие магнетронные электронагреватели и когда?» Кто в состоянии ответить на этот вопрос?

Автор ищет инвесторов и партнеров для развития экспериментов в данной области.

E-mail автора указан в начале статьи.
К разработке данной темы мы не имеем отношения, поэтому вопросы, связанные с этим проектом нам присылать не следует.
Мы безусловно попытаемся выйти на контакт с автором темы, особенно в свете последних событий, связанных с изменением климата, что особенно ярко проявилось нынешней зимой.
Учитывая значительное подорожание электроэнергии в ближайшее время, вопрос отбора «бесплатного» тепла у магнетрона может стать очень актуальным на российском рынке.
Вся дополнительная информация по этой теме будет публиковаться по мере поступления.

Чем закончились попытки создать вечный двигатель

300 лет назад саксонский инженер Иоганн Бесслер, также известный как Орфиреус​, представил проект вечного двигателя. После его смерти была доказана невозможность таких механизмов, однако ученые в разное время предлагали свои варианты самодвижущихся конструкций. Самые необычные модели — в обзоре РБК.

12 ноября 1717 года саксонский врач и инженер Иоганн Бесслер, также известный как Орфиреус, ​представил проект вечного двигателя. Конструкция представляла собой полое самодвижущееся колесо с системой противовесов диаметром около четырех метров. Модель прошла большое количество тестов и была способна работать на протяжении длительных промежутков времени — в рамках официального теста колесо вращалось в закрытой комнате в течение 54 дней.

Устройство своего изобретения инженер держал в тайне, предлагая раскрыть ее за внушительное денежное вознаграждение. Бесслера неоднократно обвиняли в мошенничестве, но сам он так и не раскрыл секрет своего изобретения, а через несколько лет и вовсе его уничтожил. Уже после смерти инженера была доказана невозможность создания вечного двигателя.

Один из первых проектов вечного двигателя создан в XII веке — индийский математик и астроном Бхаскара II создал колесо с прикрепленными к нему сосудами, заполненными ртутью. Именно с этого момента и на протяжении столетий идея создания вечного двигателя ассоциировалась с колесом. Чертежи таких устройств оставил, например, Леонардо да Винчи, который, однако, к самой идее относился скептически.

Бурный рост интереса к созданию вечного двигателя со стороны ученых и натуралистов возник в XVII–XVIII веках. В это время появлялись новые модели, одной из которых стала концепция самозаполняющейся чаши английского ученого Роберта Бойля. Его идея, однако, противоречит законам физики.

В середине XVIII века британский часовщик Джеймс Кокс изобрел напольные часы вечного движения. В качестве движущей силы служила ртуть — под влиянием атмосферного давления она перемещалась из стеклянного сосуда в стеклянную трубку. Сосуд и трубки были подвешены на цепях и уравновешены противовесами. В устройстве использовалось около 68 кг ртути, а сам изобретатель называл их настоящим вечным двигателем. Сейчас изобретение хранится в лондонском Музее Виктории и Альберта (уже без ртути).

В первой половине XIX века английский изобретатель и член парламента Уильям Конгрив разработал свою систему вечного двигателя, работающую на основе капиллярного эффекта в губках. По мысли Конгрива, движение в системе должно было возникать из-за разницы в весе сухих и мокрых губок.

Во второй половине XIX века американец Джон Роберт Килли заявил, что ему удалось сконструировать принципиально новый механизм, который приводится в действие звуковыми вибрациями на основе энергии эфира. Его изобретением заинтересовалась Клара Блумфилд Мур, вложившая в разработку проекта около $100 тыс. Она также выплачивала «изобретателю» от $250 до $300 ежемесячно. После смерти Килли выяснилось, что машина приводилась в действие с помощью резервуара сжатого воздуха, тщательно спрятанного под потолком.

В XX веке созданием вечного двигателя занимался австралийский изобретатель Дэвид Юнайпон. Ему удалось создать проект вертолета, работающего по принципу бумеранга, однако его работы по вечному двигателю успехом не увенчались. Впрочем, в процессе работы ему удалось найти конструктивные решения для некоторых своих изобретений.

Сейчас изображение Юнайпона можно увидеть на банкноте в 50 австралийских долларов. Известный австралийский художник и поэт Норман Линдси рассказывал, что однажды спросил Юнайпона, чем тот планирует заняться, на что он ответил, что намерен решить проблему вечного движения, в ответ на что Линдси рассмеялся. «Я знаю, что это невозможно, но каким триумфом это будет для моего народа, если меня ждет успех», — сказал изобретатель, происходивший из коренного австралийского племени нгарринджери.

​В мае 2017 года стало известно, что российские ученые из МФТИ нашли способ создать квантовое устройство, нарушающее второе начало термодинамики (которое оспаривает возможность создания вечного двигателя) и обладающее КПД, фактически равным 100%. Сейчас ученые под руководством заведующего Лабораторией физики квантовых информационных технологий МФТИ Гордея Лесовика занимаются воплощением этой идеи на практике.

Вечный двигатель из батарейки и проволоки. Как изготовить электромагнит

И сегодня расскажем о том, как сделать полностью рабочую модель электродвигателя из батарейки, медной проволоки и магнита. Такой макет может использоваться, как поделка на столе у домашнего электрика, как наглядный пример для объяснения принципов работы таких механизмов, и просто как забавная безделушка, которую можно подарить близкому человеку. Сделать ее довольно просто и под силу каждому, Вы можете собрать ее вместе с ребенком, что станет отличным развлечением. Далее мы предоставим подробную инструкцию с фото и видео примерами, чтобы сборка простейшего моторчика была понятной и доступной!

Шаг 1 – Подготавливаем материалы

Чтобы сделать самый простой магнитный двигатель своими руками, Вам понадобятся следующие подручные материалы:

Подготовив все нужные материалы, можно переходить к сборке простейшего электродвигателя, работающего всего на одной батарейке. Сделать маленький электрический моторчик в домашних условиях не сложно, в чем Вы сейчас и убедитесь!

Шаг 2 – Собираем самоделку

Итак, чтобы инструкция была для Вас понятной, лучше рассмотрим ее поэтапно с картинками, которые помогут визуально понять принцип сборки.

Сразу же обращаем Ваше внимание на то, что Вы можете по-своему переделать и усовершенствовать конструкцию самодельного маленького двигателя. Для примера ниже мы Вам предоставим несколько видео уроков, которые, возможно, помогут Вам сделать свою версию двигателя из батарейки, медной проволоки и магнита.

Что делать, если самоделка не работает

Если вдруг Вы собрали вечный электродвигатель своими руками, но он не вращается, не спешите расстраиваться. Чаще всего причиной отсутствия вращения мотора является слишком большое расстояние между магнитом и катушкой. В этом случае Вам нужно всего лишь самому немного подрезать ножки, на которых держится вращающаяся часть.

Читать еще:  Чем мыть двигатель ауди

Еще проверьте, хорошо ли Вы зачистили концы катушки и обеспечивается ли в этом месте контакт. Симметричность катушки также играет не маловажную роль, поэтому старайтесь делать все аккуратно и не спеша.

На днях показывал ребенку как работает электромотор. Вспомнил эксперимент по физике из школы.

  1. Батарейка АА
  2. Эмалированный провод 0.5 мм
  3. Магнит
  4. Две скрепки, размером примерно с батарейку
  5. Канцелярский скотч
  6. Пластилин

Загибаем часть скрепки.

Наматываем катушку из эмалированного провода. Делаем 6-7 витков. Концы провода фиксируем узелками. Затем зачищаем. Один конец полностью очищаем от изоляции, а другой только с одной стороны. (На фото правый конец зачищен снизу)

Фиксируем скрепки на батарейке скотчем. Устанавливаем магнит. Крепим всю конструкцию на столе при помощи пластилина. Далее надо правильно поставить катушку. Когда катушка установлена, зачищенные концы должны касаться скрепки. В катушке возникает магнитное поле, у нас получается электромагнит. Полюса постоянного магнита и катушки должны быть одинаковыми, то есть они должны отталкиваться. Сила отталкивания поворачивает катушку, один из концов теряет контакт и магнитное поле исчезает. По инерции катушка поворачивается, снова появляется контакт и цикл повторяется. Если магниты притягиваются, мотор крутится не будет. По этому один из магнитов надо будет перевернуть.

Электромагнит – это магнит, который работает (создаёт магнитное поле) только при протекании через катушку электрического тока. Чтобы сделать мощный электромагнит, нужно взять магнитопровод и обмотать его медной проволокой и просто пропустить ток по этой проволоке. Магнитопровод начнет намагничиваться катушкой и начнет притягивать железные предметы. Хотите мощный магнит – поднимайте напряжение и ток, экспериментируйте. А чтобы не мучится и не собирать магнит самому, можно просто достать катушку с магнитного пускателя (они бывают разные, на 220В/380В). Достаете эту катушку и внутрь вставляем кусок любой железяки (например, обычный толстый гвоздь) и включаем в сеть. Вот это будет по-настоящему не плохой магнит. А если у вас нет возможности достать катушку с магнитного пускателя, то сейчас рассмотрим, как сделать электромагнит самому.

Для сборки электромагнита вам понадобятся проволока, источник постоянного тока и сердечник. Теперь берем наш сердечник и мотаем медную проволоку на него (лучше виток витку, а не в навал – увеличится коэффициент полезного действия). Если хотим сделать мощный электро магнит, то мотаем в несколько слоев, т.е. когда намотали первый слой, переходим во второй слой, а потом мотаем третий слой. При намотке учитывайте, что то, что вы намотаете, эта катушка имеет реактивное сопротивление, и при протекании через эту катушку будет проходить меньший ток при большом реактивном сопротивлении. Но тоже учитывайте, нам нужен и важен ток, потому, что мы будем током намагничивать сердечник, который служит в качестве электро магнита. Но большой ток сильно будет нагревать катушку, по которой протекает ток, так что соотнесите эти три понятия: сопротивление катушки, ток и температура.

При намотке провода выберите оптимальную толщину медной проволоки (где-то 0,5 мм). А можете и поэкспериментировать, учитывая, что чем меньше сечение проволоки, тем больше будет реактивное сопротивление и соответственно ток протекать будет меньший. Но если вы будите мотать толстым проводом (примерно 1мм), было бы не плохо, т.к. чем толще проводник, тем сильнее магнитное поле вокруг проводника и плюс ко всему будет протекать больший ток, т.к. реактивное сопротивление будет меньше. Так же ток будет зависеть и от частоты напряжения (если от переменного тока). Так же стоит сказать пару слов о слоях: чем больше слоев, тем больше магнитное поле катушки и тем сильнее будет намагничивать сердечник, т.к. при наложении слоев магнитные поля складываются.

Хорошо, катушку намотали, и сердечник внутрь вставили, теперь можно приступить к подаче напряжения на катушку. Подаем напряжение и начинаем увеличивать его (если у вас блок питания с регулировкой напряжения, то плавно поднимайте напряжение). Следим при этом чтобы наша катушка не грелась. Подбираем напряжение такое, чтобы при работе катушка была слегка теплой или просто теплой – это будет номинальный режим работы, а так же можно будет узнать номинальный ток и напряжение, замерив на катушке и узнать потребляемую мощность электромагнита, перемножив ток и напряжение.

Если вы собираетесь включать от розетки 220 вольт электромагнит, то вначале обязательно измерьте сопротивление катушки. При протекании через катушку тока в 1 Ампер сопротивление катушки должно быть 220 ом. Если 2 Ампера, то 110 Ом. Вот как считаем ТОК=напряжение/сопротивление= 220/110= 2 А.

Все, включили устройство. Попробуйте поднести гвоздик или скрепку – она должна притянуться. Если плохо притягивается или очень плохо держится, то домотайте слоев пять медной проволки: магнитное поле увеличится и сопротивление увеличится, а если сопротивление увеличится, то номинальные данные электро магнита изменятся и нужно будет перенастроить его.

Если хотите увеличить мощность магнита, то возьмите подковообразный сердечник и намотайте провод на две стороны, таким образом получится манит-подкова состоящий из сердечника и 2-ух катушек. Магнитные поля двух катушек сложатся, а значит, магнит в 2 раза будет работать мощнее. Большую роль играет диаметр и состав сердечника. При малом сечении получится слабый электромагнит, хоть если мы и подадим высокое напряжение, а вот если увеличим сечение сердечка, то у нас выйдет не плохой электромагнит. Да если еще сердечник будет из сплава железа и кобальта (этот сплав характеризуется хорошей магнитной проводимостью), то проводимость увеличится и за счет этого сердечник будет лучше намагничиваться полем катушки.

Выводы:

  1. Если хотим собрать мощный электромагнит, то мотаем максимальное количество слоев (диаметр проволоки не так важен).
  2. Сердечник лучше всего взять подковообразный (нужно только будет запитать 2-е катушки).
  3. Сердечник должен быть из сплава железа и кобальта.
  4. Ток по возможности должен протекать как можно больший, потому что именно он создает магнитное поле.

Электромагнит – это магнит, который в основе своей работы использует электричество. Его сила может изменяться под действием количества тока, которое через него протекает, а полюса магнита можно менять с помощью изменения направления потока электричества. При этом, электромагнит работает в результате создания магнитного поля проходящим током.

Сделать электромагнит в домашних условиях довольно-таки просто. Для этого вам нужен железный сердечник (в форме прута) и медная проволока, которую обматывают вокруг сердечника. Подключив медную обмотку к батарейке, железо начнет намагничиваться. Отключив батарейку, сердечник потеряет магнетизм.

Вам понадобиться:

  • Железный гвоздь (15-20 см.);
  • Изолированный медный провод (около 3-х метров);
  • Аккумулятор или несколько батареек;
  • Соединительные провода;
  • Изолента.

Зачистите концы медного провода, сняв изоляцию. Подключите к ним батарейки с помощью соединительных проводов.

Намотайте медную проволоку вокруг гвоздя. При этом помните, что чем больше витков вы сделаете вокруг «сердечника», тем сильнее магнит вы получите. Будь осторожны, не изолированная часть медной проволоки не должна соприкасаться с гвоздем.

Намотку следует делать в одном направлении, ведь от этого зависит направление магнитного поля. Если вы сделаете 2 обмотки в разном направлении, вы уменьшите суммарное магнитное поле, а значит и силу магнита.

Подсоедините концы медной обмотки к батарее (аккумулятору или батарейкам), заизолировав «голые» участки изолентой. Если вы сделали все правильно, ваш магнит заработает. При смене полярности подключения обмотки к батарее, вы смените полярность вашего магнита, но не качество его работы.

Если вы хотите увеличить силу вашего магнита, вам следует сделать больше витков обмотки вокруг стержня. Следует также учесть, что чем дальше новые витки будут от стержня, тем меньше влияние они будут оказывать на силу магнитного поля. Будьте осторожны, при увеличении тока, часть тепла будет отдаваться изоляционной обмотке, что может расплавить ее и «закоротить» саму обмотку. Испытывайте разные сердечники, изменяя материал, габариты. Проверить годиться ли материал для магнитного сердечника можно легко. Поднесите к нему обычный («постоянны») магнит, если будет притягиваться – смело используйте в качестве стержня.

Читать еще:  Чем вредит супротек двигателю

В этом видеоролике канала Креосан показано, как сделать самостоятельно электрический магнит. Нужно взять трансформатор от микроволновки, распилить его и достать обмотки. Также подойдут и другие трансформаторы. Но мощные и доступные только в микроволновках.

Нам понадобится первичная обмотка. Мы его только включили в сеть, а он уже начинает вибрировать. Что же будет, когда он будет притягивать железо? Настало время испытать electromagnet. На него можно подавать 12, 24, 36, 48, 110, 220 вольт. При этом может быть постоянный и переменный ток. Включаем аккумулятор от ноутбука и посмотрим, на что способен самодельный . Берем орешек и при участии электромагнита плющим его дверью. Как видите, с орешком он легко расправился. Попробуем поднять что-то потяжелее. Например крышку от канализационного люка.

Есть идея простого измерителя .

Простейший электромагнит за 5 минут

Далее. Еще один канал (HM Show) выпустил ролик по той же теме.
Он показал, как сделать простой электромагнит за 5 минут. Для изготовления устройства своими руками понадобится стальной стержень, медная проволока и любой изолирующий материал.

Для начала изолируем стальной стержень строительным скотчем, излишки материала отрезаем. Необходимо намотать медную проволоку на изолирующий материал так, чтобы было как можно меньше воздушных зазоров. От этого зависит сила магнита, также от толщины медной проволоки, количества витков и силы ток. Данные показатели нужно подбирать экспериментально. После того, как намотали проволоку, обмотать её изолирующим материалом.

Зачищаем концы проволоки. Подключаем магнит к блоку питания и подаем напряжение четыре вольта с силой тока 1 ампер. Как видим, болтики плохо магнитятся. Чтобы усилить магнит, увеличиваем силу тока до 1,9 ампера и результат сразу меняется в лучшую сторону! С данной силой тока можем уже поднимать и не только болтики, но и кусачки с плоскогубцами. Попробуйте изготовить с использованием батарейки, а получившийся результат написать в комментариях.

Электромагнит как вечный двигатель

Кто из нас в детстве не пытался или хотя бы не размышлял о том, чтобы построить вечный двигатель на постоянных магнитах? Казалось бы, если магниты отталкиваются друг от друга одноименными полюсами, то, наверное, можно найти такую конфигурацию магнитов, когда отталкивание станет действовать непрерывно, и сможет, например, вращать ротор «вечного» двигателя.

Однако, стоило нам попробовать реализовать эту идею практически, как тут же выяснялось, что в реальности ротор все равно находит такое положение, в котором останавливается. Словно ротор и вращался лишь для того, чтобы в конце концов найти эту точку и остановиться в ней. То есть неизбежно наступало устойчивое равновесие ротора.

Стремление термодинамических систем к равновесию

И это вовсе не удивительно, ведь ученым давно известно, что термодинамические системы стремятся к равновесию, и в конце концов пребывают в устойчивом равновесии (статическом или динамическом).

Из механики мы знаем, что тело покоится либо движется равномерно и прямолинейно, если на него не действуют никакие внешние силы, либо если действие этих внешних сил на тело скомпенсировано, то есть суммарная сила равна нулю (результирующее внешнее воздействие отсутствует).

Как вы понимаете, принцип стремления термодинамических систем к равновесию относится и к чисто механическим системам. Так, если система изначально пребывает в устойчивом равновесии (и конструкция с постоянными неодимовыми магнитами не является исключением), то при воздействии на такую конструкцию внешнего фактора, выводящего систему из равновесия, неизбежно возникнет реакция со стороны данной системы.

Это значит, что в системе начнут усиливаться процессы, стремящиеся уменьшить влияние внешнего фактора, который систему из равновесия вывел (Принцип Ле Шателье — Брауна).

Модель магнитного генератора индийского блогера с канала Creative Think:

Чтобы вызвать стремление к равновесию, необходимо создать условия не равновесия

Известный пример из электродинамики — правило Ленца. Если бы правило Ленца не работало, то электродвигатели не могли бы функционировать.

В электродвигателе электрический ток создает магнитное поле, которое заставляют ротор непрерывно искать равновесие, и чтобы ротор не останавливался, магнитное поле все время действует таким образом, что вынуждает ротор (даже под механической нагрузкой) постоянно догонять точку, в которой должно будет наступить равновесие.

Но при этом электрическим полем, действующим в проводниках, совершается работа, то есть расходуется энергия источника, ведь в двигателе есть как минимум трение вала о подшипники, на преодоление которого, даже если ротор не нагружен и двигатель работает вхолостую, требуется работа, то есть расход энергии.

Если бы трения (даже о воздух) не было, и вал не был бы нагружен, то ротор бы вращался очень долго, например в полном вакууме в отсутствие силы притяжения к Земле. Но тогда никакая работа этим ротором бы уже не совершалась, и это был бы уже не двигатель, а вращающийся без сопротивления кусок металла.

Вернемся теперь к постоянным магнитам. Для системы с постоянными магнитами предсказать направление протекания процесса уравновешивающей реакции несложно.

Так, еще в 90-е годы японский экспериментатор Кохеи Минато исследовал возможность создания непрерывного вращения используя постоянные магниты на роторе и статоре своего мотора. В конце концов он был вынужден также создавать изменяющееся магнитное поле, которое заставляло бы ротор искать равновесие.

Минато демонстрировал, как приближая или отдаляя постоянный магнит, можно вынудить ротор с постоянными магнитами вращаться. Но в итоге он просто дошел в экспериментах до двигателя с постоянными магнитами на роторе.

Никакого вечного двигателя не получилось. На изменение внешнего магнитного поля, от которого бы отталкивался ротор с магнитами, требуется энергия извне. То есть, для создания условий, в которых ротор с магнитами будет искать равновесие, необходимо параллельно совершать работу.

Еще одна модель магнитного генератора с Интернета:

Динамическое равновесие при низкотемпературной сверхпроводимости как частный случай

Рассмотрим крайний случай. Многие знают, что свинцовая катушка с током, помещенная в жидкий гелий, способна поддерживать ток (и магнитное поле тока) на протяжении многих лет, поскольку сопротивление проводника исчезает.

Почему сопротивление исчезает? Потому что колебания атомов в металле, обуславливающие электрическое сопротивление металла, прекращаются при критической температуре. Две такие катушки будут вести себя по отношению друг к другу как постоянные магниты. Но опять же, они найдут устойчивое равновесие и остановятся.

Движения под действием силы не будет, то есть двигателя совершающего работу не получится. Движущиеся в сверхпроводнике электроны также работы не совершают, хотя и пребывают в устойчивом динамическом равновесии.

Чтобы двигатель совершал работу — он обязан расходовать энергию, но откуда ей взяться?

Допустим, что двигатель на постоянных магнитах реально возможен. Тогда для совершения механической работы, то есть на перемещение какого-нибудь объекта под действием силы со стороны вала такого двигателя (даже на преодоление силы трения при вращении ротора вхолостую), необходимо преобразование некой энергии внутри двигателя.

А что это за энергия, если не энергия постоянных магнитов или не энергия подводимая извне? Раз по условию задачи энергия извне не подводится, значит остается энергия постоянных магнитов.

Однако, будучи просто расположены на роторе и статоре, магниты энергию не отдадут. Чтобы заставить магнит размагничиваться, необходимо совершить работу, то есть опять же подвести к устройству энергию извне. Остается делать выводы.

Ранее ЭлектроВести писали, что ф ранцузский автопроизводитель Citroen официально представил обновленный кросс-хэтчбек C4, включая его электрическую версию Citroen ë-C4. Покупатель сможет выбрать бензиновый двигатель мощностью 100-155 л.с., дизельный двигатель мощностью 110-130 л.с. или электрическую установку мощностью 100 кВт (136 л.с.).

Ссылка на основную публикацию
Adblock
detector