Электромеханическая характеристика синхронный двигатель

Электрооборудование насосных, компрессорных станций и нефтебаз — Механические характеристики и свойства синхронных электродвигателей

Содержание материала

  • Электрооборудование насосных, компрессорных станций и нефтебаз
  • Пожаро- и взрывоопасность
  • Техническая характеристика применяемого электрооборудования
  • Выбор электрооборудования условиям окружающей среды
  • Механические характеристики и свойства синхронных электродвигателей
  • Механические характеристики и свойства электродвигателей постоянного тока
  • Режимы работы электродвигателей
  • Типы и исполнения электродвигателей
  • Выбор электродвигателей по номинальным данным
  • Муфты для соединения электродвигателя с механизмом
  • Аппараты ручного и автоматического управления
  • Реле управления
  • Аппараты защиты
  • Пусковые и регулировочные сопротивления
  • Станции и щиты управления
  • Условные графические обозначения в электрических схемах
  • Основы автоматического управления
  • Электрообезвоживающие и электрообессоливающие установки
  • Электрический привод насосов
  • Электрический привод компрессоров
  • Электрический привод задвижек
  • Электрический привод вентиляторов
  • Электрическое освещение
  • Светильники
  • Расчет электрического освещения
  • Внутреннее и наружное освещение
  • Виды и способы электропроводок
  • Электропроводки во взрывоопасных зонах
  • Электропроводки в помещениях с невзрывоопасными зонами
  • Кабели и кабельные линии
  • Присоединение проводов и кабелей к электрооборудованию
  • Воздушные электрические линии
  • Гибкие и жесткие токопроводы
  • Трансформаторные подстанции и РУ
  • Выключатели
  • Разъединители, короткозамыкатели и отделители
  • Измерительные трансформаторы
  • Шины распределительных устройств. Изоляторы
  • Источники постоянного тока
  • Комплектные распределительные устройства 6-10 кВ
  • КТП, компоновка подстанций
  • Источники электроснабжения, категории электроприемников
  • Понизительные подстанции и распределительные устройства
  • Источники аварийного электроснабжения
  • Релейная защита
  • Автоматизация электроснабжения
  • Автоматическое включение резерва
  • Защитные зануление и заземление
  • Молниезащита
  • Защита от статического электричества
  • Эксплуатация и ремонт электрооборудования
  • Экономичность эксплуатации электроустановок
  • Ремонт электрооборудования и электросетей
  • Сведения по технике безопасности

Синхронным называют такой электродвигатель переменного тока, у которого угловая скорость (частота вращения) ротора одинакова с угловой скоростью (частотой вращения) вращающегося поля, т. е. ω=ω0 (п=n0).
При работе синхронного электродвигателя питание статорной обмотки производится переменным током, а роторной — постоянным. Роторная обмотка называется обмоткой возбуждения, а питающий ее постоянный ток — током возбуждения. Взаимодействие магнитных полей ротора и статора создает электромагнитный вращающий момент. Однако, поскольку переменный ток меняет свое направление с частотой 50 периодов в секунду (50 Гц), при включении двигателя ротор не может сразу начать вращение и вибрирует, так как испытывает непрерывные толчки в обе стороны. Для того чтобы можно было запустить синхронный двигатель в ход, его ротор, кроме обмотки возбуждения, снабжают дополнительной пусковой обмоткой (короткозамкнутой или фазной) —с такой обмоткой двигатель включается как обычный асинхронный электродвигатель от полного или пониженного напряжения сети. При достижении двигателем угловой скорости, близкой к синхронной (0,95—0,98ω0), в обмотку возбуждения подается постоянный ток (ток возбуждения), после чего угловая скорость вращения ротора становится одинаковой с угловой скоростью вращающегося поля, двигатель входит в синхронизм и начинает работать в синхронном режиме. При синхронной частоте вращения ротора наличие дополнительной пусковой обмотки не оказывает никакого действия, так как эта обмотка, вращаясь синхронно с магнитным полем, не пересекается магнитными линиями, токи в ней не индуктируются и вращающий момент не создается.
Питание обмотки возбуждения осуществляется от возбудителя — генератора постоянного тока, смонтированного на самом двигателе, или отдельно стоящего возбудительного агрегата — генератора постоянного тока с приводом от асинхронного электродвигателя трехфазного тока. Кроме вращающихся возбудительных агрегатов заводы выпускают статические возбудители из полупроводниковых (тиристорных) выпрямителей. Возбудительные агрегаты для взрывозащищенных машин нефтяных насосных и газокомпрессорных станций должны быть также во взрывозащищенном исполнении или расположены в отдельном невзрывоопасном помещении.

Рис. 6. Схемы пуска и возбуждения синхронных электродвигателей

На рис. 6,а изображена схема питания обмотки возбуждения ОВ синхронного двигателя СД от вращающегося возбудителя В (генератора постоянного тока) с обмоткой возбуждения ОВВ и реостатом возбуждения РВ. При пуске синхронного двигателя вследствие большой частоты вращения электромагнитного поля относительно неподвижного ротора на концах обмотки возбуждения (на кольцах ротора) возникают большие напряжения, опасные для изоляции ротора. Для предотвращения этого обмотку возбуждения перед пуском замыкают на разрядное сопротивление СР, которое отключается контактором КВ1 одновременно с включением постоянного тока двухполюсным контактором КВ2. Для механизмов, не требующих при пуске больших моментов (например, центробежных насосов и вентиляторов), применяют схему без разрядного сопротивления, с глухим подключением возбудителя к обмотке возбуждения (рис. 6,б), а в качестве разрядного используют сопротивление обмотки возбуждения возбудителя ОВВ. На рис. 6,в изображена схема возбуждения от комплектного статического возбудителя с блоком управления БУ. Регулирование тока возбуждения осуществляется реостатом возбуждения РВ. Обмотка возбуждения ОВ получает питание постоянным током от селенового выпрямителя БС.


Рис. 7. Механическая характеристика синхронного электродвигателя

Механическая характеристика синхронного электродвигателя обусловлена его основным свойством — постоянной угловой скоростью (частотой вращения) и представляется в виде прямой линии, параллельной оси моментов. Как видно из рис. 7, механическая характеристика обрывается при М=Мmаx. Это означает, что при колебаниях нагрузки, не превышающих Mmax, значение мгновенной угловой скорости колеблется около средней величины, весьма близкой к ω0. При значительном увеличении момента нагрузки (больше Mmax) двигатель выпадает из синхронизма и останавливается или переходит в асинхронный режим. Во избежание выпадения из синхронизма при случайных толчках нагрузки синхронные двигатели делают такими, что их максимальный момент в 2—2,5 раза больше номинального Mmax=(2:2,5)Мnom.
Пуск синхронного двигателя характеризуется тремя моментами: пусковым Мпуск, необходимым для трогания двигателя с места под нагрузкой; входным Мвх, при входе в синхронизм, т. е. при угловой скорости, близкой к синхронной (0,95-:-0,98ω0), и максимальным Ммах (критическим), при синхронной скорости и номинальных напряжении и токе возбуждения ротора. Минимальные моменты, необходимые для пуска механизмов насосных и компрессорных станций, приведены в табл. 5.
Пуск синхронных электродвигателей может быть осуществлен как от полного, так и от пониженного напряжения, в зависимости от мощности питающей сети. Способы ограничения пускового тока, если прямой пуск недопустим, те же, что и для асинхронных двигателей (включение активных и реактивных сопротивлений и автотрансформаторов в цепь статора).

Минимальные моменты синхронных двигателей, необходимые для пуска механизмов

Статор синхронного электродвигателя, будучи присоединен к сети переменного тока, получает от нее необходимую для намагничивания реактивную мощность. Ротор намагничивается подаваемым в него током возбуждения (постоянным током). При малом токе возбуждения электродвигатель потребляет из сети реактивную мощность, при большом — отдает ее в сеть. В первом случае говорят, что двигатель работает с отстающим коэффициентом мощности, во втором — с опережающим коэффициентом мощности.

Читать еще:  Двигатель x20xev какой бензин


Рис. 8. Схемы электродвигателей постоянного тока с последовательным (а), параллельным (б) и смешанным (а) возбуждением

Свойство синхронных электродвигателей отдавать в сеть реактивную мощность используют для компенсации недостающей в сети реактивной мощности, т. е. для улучшения коэффициента мощности сети.

Лабораторная работа №10 Испытание синхронного двигателя

ЛАБОРАТОРНАЯ РАБОТА №10

Испытание синхронного двигателя

Изучить принцип действия и устройство трехфазного синхронного двигателя.

Ознакомиться с особенностями и порядком пуска в ход синхронного двигателя.

Снять и построить U-образные характеристики. Убедиться, что перевозбужденный синхронный двигатель одновременно служит источником реактивной энергии и может использоваться для повышения коэффициента мощности электроустановок.

Снять и построить механическую и рабочие характеристики. Выявить основные свойства синхронного двигателя и области его применения

Указания к работе

Используя рекомендованную литературу, ознакомиться с принципом работы, конструкцией и назначением основных частей трехфазного синхронного двигателя.

Синхронным двигателем называется двигатель переменного тока, у которого частота вращения т. е. скорость ротора, равна частоте вращения магнитного поля и не зависит от нагрузки на валу.

Статор синхронного двигателя не отличается по конструкции от статора асинхронного двигателя. В пазы сердечника статора укладывается трехфазная обмотка. Каждая фаза занимает 1/3 пазов. Таким образом, все три фазы А, В и С обмотки статора смещены в пространстве под углом 1200 друг к другу. Обмотка соединяется по схеме ”звезда” или ”треугольник” и включается в сеть трехфазного тока. При этом создается вращающееся магнитное поле. Частота вращения магнитного поля no называется синхронной. Синхронная частота вращения определяется числом пар полюсов статорной обмотки р и частотой изменения тока в сети f:

Ротор синхронного двигателя представляет собой электромагнит постоянного тока. Он может иметь ярко выраженные и неявновыраженные полюсы. Постоянный ток в обмотку ротора подается от постороннего источника (возбудителя) через щетки и два контактных кольца.

Следует обратить внимание на особенности пуска двигателя. Как известно, синхронный двигатель не имеет собственного пускового момента и не может разогнаться без посторонней помощи. В связи с этим на роторе устанавливается дополнительная пусковая обмотка, выполненная по типу ”беличьего колеса” асинхронного двигателя. Пуск двигателя производится в два этапа. Сначала осуществляется асинхронный запуск, при котором ротор разгоняется до скорости близкой к синхронной (0,95no), благодаря пусковой обмотке. Затем подается постоянный ток в обмотку возбуждения ротора и двигатель автоматически втягивается в синхронизм.

Достоинства синхронного двигателя:

— высокие технико-экономические показатели (КПД и);

— абсолютно жесткая механическая характеристика;

— возможность генерирования реактивной энергии;

— возможность конструирования тихоходных двигателей (с частотой вращения 94 — 100 об/мин) при сохранении высоких технико-экономических показателей;

— сравнительно высокая перегрузочная способность (т. е. отношение максимального вращающего момента к номинальному).

* сложность конструкции и дороговизна;

* сложность регулирования скорости;

* необходимость в источниках переменного и постоянного тока;

* сложность пуска и реверсирования.

Применение. Синхронные двигатели применяют в установках средней и большой мощности (более 100 кВт), не требующих частых пусков, реверсирования и регулирования скорости. К ним относятся привода мощных насосов, компрессоров, воздуходувок, вентиляторов, аэродинамических труб и т. д.

Рабочее задание

1. Ознакомиться со схемой лабораторной установки, приведенной на рисунке 1. На схеме приняты следующие обозначения:

— выводы обмотки возбуждения синхронного двигателя;

— резистор для регулирования тока возбуждения IB синхронного двигателя;

— генератор постоянного тока. Служит нагрузкой для синхронного двигателя;

— обмотка возбуждения генератора;

— резистор для регулирования тока возбуждения нагрузочного генератора;

— амперметр. Измеряет ток нагрузочного генератора IГ;

— нагрузочный резистор. Величину сопротивления отдельных ступеней резистора RH можно изменять с помощью тумблеров 1,2,3. 7. При этом изменяется ток генератора IГ и, следовательно, нагрузка на валу;

— вольтметр. Измеряет напряжение генератора;

— трехполюсный выключатель. Служит для включения статорной обмотки в сеть при пуске синхронного двигателя;

— автомат для подачи возбуждения в ротор СД;

— автомат для включения обмотки возбуждения нагрузочного генератора;

— вольтметр. Измеряет линейное напряжение UC, подводимое к статорной обмотке синхронного двигателя;

— амперметр. Измеряет линейный ток IC статорной обмотки СД;

— амперметр. Измеряет ток возбуждения IB обмотки ротора СД;

— фазометр. Измеряет коэффициент мощности синхронного двигателя;

— тахометр. Служит для измерения частоты вращения двигателя.

2. Записать паспортные данные синхронного двигателя и основные сведения об электроизмерительных приборах.

Паспортные данные, указанные на корпусе двигателя, для удобства вынесены на лабораторный стенд.

В паспорте указать: тип двигателя —;

— номинальное напряжение двигателя в В;

— номинальная мощность на валу в кВт;

— номинальный ток статора в А;

— номинальная (синхронная) скорость в об/мин;

— номинальный К. П.Д. в %;

— номинальный ток возбуждения в А;

— номинальный коэффициент мощности;

— частота сети в Гц.

Определить число пар полюсов р, используя выражение (1).

Определить номинальный момент на валу:

.

Основные сведения об электроизмерительных приборах внести в таблицу 1.

Наименование и марка прибора

Диапазон измерения прибора

Рис. 1. Схема лабораторной установки

3. Пуск синхронного двигателя.

Собрать цепь обмотки возбуждения, показанную пунктиром на схеме рис. 1 и под наблюдением преподавателя осуществить пуск синхронного двигателя.

Порядок операций при пуске:

* убедиться, что автоматы АВД и АВГ отключены;

* поворотом ключа К (по часовой стрелке) подать напряжение на обмотку статора двигателя;

* когда стрелка тахометра n приблизится к отметке 1500 об/мин (зеленая метка), подать возбуждение автоматом АВД;

* для остановки двигателя отключить статор двигателя ключом К. Затем обесточить обмотку возбуждения ротора автоматом АВД.

4. U-образные характеристики.

Снять и построить U-образные характеристики IC = f(IB) при холстом ходе и в нагрузочном режиме.

Характеристики снимаются для трех значений нагрузочного момента.

а) М1 = 0 (холостой ход)

б) М2 = 0,3МН (нагрузочный режим)

Рис. 2. U-образные характеристики

По указанию преподавателя значения моментов могут быть изменены. Общий вид U-образных характеристик показан на рис. 2.

Читать еще:  Двигатель lifan 154f характеристики

С особой тщательностью должна быть снята точка характеристики, соответствующая минимальному току статора. По показаниям фазометра этой точке должен соответствовать cos j = 1. Следовательно, ток статора имеет только активную составляющую. При моменте М = 0 этот ток обусловлен только потерями в двигателе. Указанный режим работы называется режимом нормального возбуждения. При этом ток возбуждения равен IBH.

При уменьшении тока возбуждения IB IBH наступает режим перевозбуждения. Он характеризуется потреблением из сети дополнительной емкостной составляющей тока. Ток статора снова растет (правая часть характеристики), а двигатель, подобно конденсатору, становится источником реактивной энергии. Этот режим имеет важное значение для повышения коэффициента мощности электроустановок.

При снятии U-образной характеристики в режиме холостого хода М1 = 0 должна соблюдаться следующая последовательность операций:

а) убедиться, что двигатель вращается в режиме холостого хода (ток генератора IГ = 0, автомат АВГ отключен);

б) изменяя ток ротора IB перемещением движка резистора RД из одного крайнего положения в другое, записать в таблицу 2 результаты 10-12 измерений. В таблицу вносятся значения тока ротора IB, тока статора IC и cosj с указанием характера (”емк.” или ”инд.”). При зашкаливании стрелки фазометра указать лишь характер cos j.

Последовательность операций при снятии U-образной характеристики в режиме нагрузки:

а) получить у преподавателя значения нагрузочного тока генератора IГ = IГ1 и IГ = IГ2;

б) осуществить пуск двигателя (см. пункт 3);

в) включить АВГ и движком резистора RГ установить напряжение генератора UГ = 110 В;

г) тумблерами 1,2,3. 7 установить заданный ток генератора IГ = IГ1;

д) изменяя ток возбуждения IB резистора RД, записать в таблицу 2 результаты 10-12 измерений (следить за напряжением генератора и при необходимости поддерживать UГ = 110 В);

е) повторить измерения при токе нагрузочного генератора IГ = IГ2. Результаты записать в таблицу 2.

Механические и энергетические характеристики синхронных двигателей

Синхронные трехфазные двигатели (СД) широко применяются в электроприводах самых разнообразных технологических машин. Схема включения СД приведена на рис. 2.21а, механические характеристики на рис. 2.21б.

Рис. 2.21. а) схема включения синхронного двигателя;

б) механические характеристики синхронного двигателя в режимах пуска и синхронного вращения.

Статор СД выполнен аналогично статору АД — три статорных обмотки расположены на статоре таким образом, что оси создаваемых ими потоков сдвинуты в пространстве на 120 0 . Подключение начал обмоток статора, которые на рис. 2.21а обозначены как С1, С2, С3, к трехфазной сети переменного тока со сдвигом напряжения между фазами на 120 электрических градусов приводит к появлению магнитного поля, вращающегося с синхронной скоростью ω=2πf1/p. Здесь p – число пар полюсов статорных обмоток СД; f1 – частота питающей сети. При p=1 вращающееся поле представляет собой два диаметрально противоположно расположенных разноименных полюса северного (N) и южного (S), которые и вращаются со скоростью ω.

Ротор СД выполняется с двумя обмотками: обмоткой возбуждения и короткозамкнутой пусковой обмоткой в виде «беличьей клетки». Обмотка возбуждения питается напряжением постоянного тока и при протекании в ней тока она превращается в электромагнит постоянного тока, разноименные полюса которого в зависимости от скорости вращения могут выполняться как явными, так и неявными, т.е. обмотка возбуждения распределяется по наружной поверхности ротора.

При неподвижном роторе разноименные полюса вращающегося поля статора и ротора не успевают притянуться. Вращающий момент двигателя равен нулю, а в обмотке возбуждения полем статора наводится столь большая э.д.с., что может наступить пробой изоляции обмотки возбуждения.

Для того, чтобы разноименные полюса статора и ротора притянулись (вошли в синхронизм) и при этом не появлялись существенно превышающие номинальные значения броски тока, ротор СД необходимо разогнать до подсинхронной скорости ωП, которая равна ωП=0,95ω. Для этого предназначена пусковая короткозамкнутая обмотка, т.е. СД запускается как АД с короткозамкнутым ротором. Пусковые характеристики АД при различных вариантах пусковой обмотки приведены на рис. 2.21б

У характеристики 1 пусковой момент МП1 меньше пускового момента характеристики 2 — МП2 , однако момент вхождения в синхронизм МВ1 больше МВ2. Выбор вида пусковой характеристики определяется конкретными условиями работы СД. Обмотка возбуждения СД при пуске закорачивается на разрядное сопротивление, что защищает ее изоляцию от перенапряжений. К источнику напряжения постоянного тока она подключается после того, как скорость ротора ω достигнет подсинхронной ωП.

Пусковая обмотка СД во время пуска интенсивно нагревается, поэтому время тока СД ограничено.

После вхождения СД в синхронизм его скорость при изменении величины момента сопротивления на валу до некоторого максимального значения Ммакс остается постоянной и равной скорости вращающегося магнитного поля – синхронной скорости ω. Поэтому его механическая характеристика, приведенная на рис. 2.21б, имеет вид прямой, параллельной оси абсцисс. Если Мс превышает Ммакс, то СД может выпасть из синхронизма.

Для определения максимального момента СД Ммакс, до которого сохраняется синхронная работа СД, служит угловая характеристика СД. Она отражает зависимотсь вращающего момента М от внутреннего угла СД θ, представляющего собой угол сдвига между осью магнитного поля статора и осью поля ротора. Момент СД представляет собой синусоидальную функцию угла θ – М=Ммаксsinθ. Максимального значения вращающий момент СД достигает при θ=π/2. При больших значениях θ величина вращающего момента двигателя уменьшается и поэтому двигатель выпадает из синхронизма. Номинальному моменту двигателя Мном соответствует номинальный угол θном=25 0 ÷30 0 . При таком значении θном коэффициент перегрузки СД по моменту кПмаксном=2÷2,5.

Синхронный двигатель может работать во всех режимах электрического торможения. Наиболее часто используется режим динамического торможения. Для его реализации обмотки статора СД отключают от сети и закорачивают на сопротивление динамического торможения RДТ, а обмотка возбуждения продолжает питаться постоянным током. Механические характеристики СД аналогичны характеристикам АД при динамическом торможении (см. рис. 2.20б).

Торможение противовключением используется редко из-за того, что перевод СД в этот режим сопровождается значительными бросками тока и требует применения сложных схем управления.

Работа системы электроснабжения характеризуется потреблением электроприемниками реактивной мощности. Это вызывает дополнительные потери энергии в элементах системы, снижение уровня напряжения и необходимость иметь повышенную пропускную способность подстанций и распределительных сетей, что снижает экономичность работы системы. В связи с этим для улучшения показателей работы системы электроснабжения необходимо производить компенсацию реактивной мощности, что может осуществляться несколькими способами.

Читать еще:  Что такое перечиповка двигателя

Рис. 2.22. U-образные характеристики СД.

Один из эффективных способов компенсации реактивной мощности связан с использованием СД, который за счет регулирования тока возбуждения может осуществлять генерацию реактивной мощности в электрическую сеть. В этом случае СД работает с опережающим коэффициентом cos φ. Возможность работы СД в качестве компенсатора реактивной мощности иллюстрируют U-образные характеристики СД, приведенные на рис. 2.22. Эти характеристики показывают зависимости тока статора I1 и его cos φ от тока возбуждения IВ при U=const и Р=const.

Характеристики I1(IВ) показывают, что при увеличении от нуля тока возбуждения ток статора вначале уменьшается, что происходит за счет уменьшения его реактивной составляющей. При некотором токе возбуждения она становится равной нулю, а cos φ=1. При дальнейшем увеличении тока возбуждения вновь появляется и увеличивается реактивная составляющая тока статора, но уже с опережающей фазой. Синхронный двигатель начинает работать генератором реактивной энергии с отдачей ее в сеть.

Характеристики рис. 2.22 позволяют выявить также зависимость компенсирующей способности СД от мощности Р на его валу. Как видно из рис. 2.22 с ростом мощности Р область генерации реактивной мощности (опережающего cos φ) смещается в сторону больших токов возбуждения. Другими словами, при неизменном токе возбуждения с изменением мощности на валу отдаваемая в сеть реактивная мощность также меняется.

Из сказанного следует важный вывод: если СД работает с переменной нагрузкой на валу, то для полного использования его компенсирующих свойств требуется регулирование тока возбуждения.

Следует подчеркнуть, что при использования СД в качестве источника реактивной мощности необходимо обеспечивать повышенные токи возбуждения и увеличивать габаритную (полную) мощность СД, что не является ограничивающим фактором для такого применения СД. Покажем это следующим несложным расчетом.

Запишем отношение полной (габаритной) мощности S к активной мощности Р

.

Пусть требуется, чтобы реактивная опережающая мощность составляла 40% активной мощности, т.е. Q/P=0,4. Расчет выявляет, что при этом отношение S/Р составит 1,08, т.е. генерирование указанной реактивной мощности потребует увеличения габаритной мощности только на 8%. Это показывает, что использование СД для компенсации реактивной мощности является выгодным.

При использовании СД для компенсации реактивной мощности обычно требуется рассматривать в комплексе несколько вопросов. Одним из основных является технико-экономическое обоснование использования данного способа компенсации реактивной энергии. Как известно, кроме СД для этой цели могут использоваться также статические компенсирующие устройства (конденсаторы) и синхронные компенсаторы. Среди приемлемых вариантов экономически целесообразным будет тот, который обеспечивает минимум приведенных годовых затрат:

где Кн,э – нормативный коэффициент эффективности капитальных вложений К; Сэ эксплуатационные расходы.

Если в результате выполненных технико-экономических расчетов выявлена целесообразность использования СД для компенсации определенной реактивной мощности Q, то далее необходимо установить наиболее экономическое ее распределение между отдельными СД. Это достигается отысканием оптимального варианта возбуждения СД, участвующих в компенсации. Под оптимальным вариантом возбуждения СД обычно принимают такое распределение реактивной мощности Q между отдельными СД, при котором суммарные потери активной мощности, зависящие от выработки и распределения реактивной мощности, минимальны.

На практике распределение реактивной мощности между СД часто производят пропорционально либо их полной номинальной мощности Sном, либо пропорционально их активной мощности Рном . Этот принцип, как показывают расчеты, дает потери активной мощности, близкие к минимальному значению.

Токи возбуждения отдельных СД, компенсирующих заданную для них реактивную мощность, могут быть определены по кривым Q(IВ), снятым опытным путем.

Синхронные двигатели

Мощность и механический момент синхронного двигателя. Способы возбуждения синхронных машин. Механическая характеристика синхронного двигателя. Векторные диаграммы напряжений трехфазного генератора. Пуск двигателя с помощью дополнительно двигателя.

  • посмотреть текст работы «Синхронные двигатели»
  • скачать работу «Синхронные двигатели» (реферат)

Подобные документы

Электромагнитный момент асинхронной машины. Определение зависимости электромагнитного момента от скольжения. Механическая характеристика асинхронного двигателя. Совместная работа асинхронного двигателя с нагрузкой на валу. Пуск асинхронного двигателя.

методичка, добавлен 07.10.2020

Работа синхронной машины в режиме двигателя, зависимость механических характеристик от нагрузки. Типы пуска синхронного двигателя. Работа асинхронных двигателей облегченной конструкции в качестве синхронных компенсаторов для снижения активной мощности.

лекция, добавлен 03.10.2014

Рассмотрение электромагнитной схемы трёхфазного трансформатора. Определение номинальных токов в обмотках трансформатора. Изучение схемы асинхронного двигателя. Характеристика и анализ холостого хода синхронного генератора. Расчет тока возбуждения.

контрольная работа, добавлен 27.11.2014

Принцип действия синхронных машин. Основные элементы трехфазного синхронного двигателя. Характеристика холостого хода генератора. Физическая природа реакций якоря. Изменение напряжения на выходе генератора при изменении нагрузки. Теория двух реакций.

курсовая работа, добавлен 27.06.2015

Конструкция и принцип действия синхронного генератора. Величина наводимой в обмотке статора ЭДС. Система пуска синхронного двигателя. Схема ротора с пусковой обмоткой. Применение реактивных синхронных двигателей, их отличие обычных классических машин.

доклад, добавлен 14.08.2013

Магнитное поле синхронного генератора в режиме нагрузки. Реакция якоря. U-образные характеристики синхронного двигателя. Принцип действия и устройство асинхронного двигателя с короткозамкнутым ротором воздушного зазора в машинах с явно полюсным ротором.

контрольная работа, добавлен 09.11.2013

Анализ переходных процессов в момент запуска синхронного электрического двигателя. Исследование особенностей использования при запуске двигателя широтно-импульсного преобразователя с трапецеидальным, синусоидальным и прямоугольным выходными напряжениями.

статья, добавлен 22.03.2016

Основные пусковые характеристики трехфазного асинхронного двигателя с фазным ротором. Повышенное потребление электрической энергии из питающей сети. Момент сил сопротивления на валу машины. Начальный пусковой момент. Снижение нагрева двигателя.

реферат, добавлен 18.02.2012

Электродвигатели постоянного тока. Особенности структурных элементов, вращающий момент двигателя с последовательным возбуждением. Сущность трехфазного синхронного генератора. Асинхронные двигатели переменного тока. Генератор с параллельным возбуждением.

курсовая работа, добавлен 16.05.2013

Определение механических характеристик двигателя постоянного тока независимого возбуждения при ослаблении магнитного потока, снижении напряжения и увеличении сопротивления в якорной цепи. Проверка пригодности трехфазного асинхронного двигателя 2ПБ-180МГ.

курсовая работа, добавлен 09.06.2014

  • 1
  • 2
  • 3
  • 4
  • »
Ссылка на основную публикацию
Adblock
detector