Элемент теплового двигателя совершающий работу

Элемент теплового двигателя совершающий работу

Тепловой машиной называется периодический действующий двигатель, совершающий работу за счет получаемого извне тепла.

Любая тепловая машина работает по принципу кругового (циклического) процесса, т.е. возвращается в исходное состояние (рис. 5.1). Но чтобы при этом была совершена полезная работа, возврат должен быть произведен с наименьшими затратами.

Полезная работа равна разности работ расширения и сжатия, т.е. равна площади, ограниченной замкнутой кривой.

Обязательными частями тепловой машины являются нагреватель (источник энергии), холодильник, рабочее тело (газ, пар).

Зачем холодильник? Так как в тепловой машине реализуется круговой процесс, то вернуться в исходное состояние можно с меньшими затратами, если отдать часть тепла. Или если охладить пар, то его легче сжать, следовательно работа сжатия будет меньше работы расширения. Поэтому в тепловых машинах используется холодильник.


Рис. 5.3

Прямой цикл используется в тепловом двигателе – периодически действующей тепловой машине, совершающей работу за счет полученной извне теплоты. Рассмотрим схему теплового двигателя (рис. 5.3). От термостата с более высокой температурой Т1, называемого нагревателем, за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой Т2, называемому холодильником, за цикл передается количество теплоты Q2 и совершается работа A:

. (5.2.1)


Рис. 5.4

Доступны следующие дополнительные демонстрации: 1. Гидравлическая машина. 2. Гидростатическое давление.

Принцип действия и КПД тепловых двигателей в физике

Принцип действия и КПД тепловых двигателей

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно второму началу термодинамики тепловой двигатель может непрерывно совершать периодически повторяющуюся механическую работу за счёт охлаждения окружающих тел, если он не только получает теплоту от более горячего тела (нагревателя), но при этом отдаёт теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идёт не всё количество теплоты, полученное от нагревателя, а только часть её.

Таким образом, основными элементами любого теплового двигателя являются:
1) рабочее тело (газ или пар), совершающее работу;
2) нагреватель, сообщающий энергию рабочему телу;
3) холодильник, поглощающий часть энергии от рабочего тела.
Согласно закону сохранения энергии работа, совершаемая двигателем, равна:
, где — количество теплоты, полученное от нагревателя, — количество теплоты, отданное холодильнику.
Коэффициентом полезного действия (КПД) теплового двигателя называется отношение работы , совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то . КПД теплового двигателя пропорционален разности температур нагревателя и холодильника. При двигатель не может работать.
Цикл Карно — это круговой обратимый процесс, состоящий из двух изотермических и двух адиабатических процессов.
Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели ) и поиски путей их усовершенствования.

Выбор двух изотермических и двух адиабатических процессов был обусловлен тем, что работа газа при изотермическом расширении совершается за счёт внутренней энергии нагревателя, а при адиабатном процессе — за счёт внутренней энергии расширяющегося газа. В этом цикле исключён контакт тел с разной температурой, следовательно, исключена теплопередача без совершения работы.

Читать еще:  Электронный регулятор оборотов однофазного двигателя

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.
На рис. 79 изображены термодинамические процессы цикла. В процессе изотермического расширения (1-2) при температуре работа совершается за счёт изменения внутренней энергии нагревателя, т. е. за счёт подведения к газу количества теплоты :
Охлаждение газа перед сжатием (3-4) происходит при адиабатном расширении (2-3). Изменение внутренней энергии при адиабатном процессе полностью преобразуется в механическую работу:

Рис. 79

Температура газа в результате адиабатического расширения (2-3) понижается до температуры холодильника . В процессе (3-4) газ изотермически сжимается, передавая холодильнику количество теплоты :
Цикл завершается процессом адиабатического сжатия (4-1), при котором газ нагревается до температуры .
Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

(2.26)

Суть формулы (2.26) выражена в доказанной С. Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

Эта лекция взята со страницы лекций по всем темам предмета физика:

Возможно эти страницы вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Презентация по физике » Тепловые двигатели».
презентация к уроку по физике (8, 10 класс) на тему

Презентация «Тепловые двигатели» создана для проведения уроков в 8 класах при изучении тем: «Работа газа и пара при расширении», «Двигатель внутреннего сгорания», «Паровая турбина» и в 10 классах при изучении темы: «Принцип действия тепловых двигателей».

Скачать:

Вложение Размер
Презентация «Тепловые двигатели» 2.4 МБ
Предварительный просмотр:

Подписи к слайдам:

Что такое тепловой двигатель? Тепловой двигатель – это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Виды тепловых двигателей:

История создания теплового двигателя. 1690 – пароатмосферная машина Д.Папена 1705 — пароатмосферная машина Т.Ньюкомена для подъема воды из шахты 1763-1766 – паровой двигатель И.И.Ползунова 1784 – паровой двигатель Дж.Уатта 1865 – двигатель внутреннего сгорания Н.Отто 1871 – холодильная машина К.Линде 1897 – двигатель внутреннего сгорания Р.Дизеля (с самовоспламенением )

В апреле 1763 г. Ползунов демонстрировал работу огнедействующей машины «для заводских нужд»

Устройство теплового двигателя Три основных элемента любого теплового двигателя: 1.Нагреватель, сообщающий энергию рабочему телу. 2. Рабочее тело (газ или пар), совершающее работу. 3.Холодильник, поглощающий часть энергии от рабочего тела.

Принцип действия теплового двигателя Принцип действия теплового двигателя основан на свойстве газа или пара при расширении совершать работу. В процессе работы теплового двигателя периодически повторяются расширения и сжатия газа. Расширения газа происходят самопроизвольно, а сжатия под действием внешней силы.

Нагреватель. T ₁ Холодильник. T ₂ Рабочее тело Q ₁ Q ₂ Q ₁ — Q₂= A Как работает тепловой двигатель?

КПД теплового двигателя. Коэффициент полезного действия теплового двигателя (КПД) – отношение работы, совершаемой двигателем за цикл, к количеству теплоты, полученной от нагревателя.

Тепловой двигатель К П Д в % Паровая машина Ползунова Уатта 1 3 -4 Паровая турбина 35 Газовая турбина 45 Двигатель внутреннего сгорания 20 -35 Двигатель Дизеля Первый Тракторный Стационарный 22 28 — 32 34 — 44 Реактивный двигатель 47

Карно Никола Леонард Сади (1796-1832 г.)- французский физик и инженер. Свои исследования он изложил в сочинении «размышления о движущей силе огня и о машинах, способных развивать эту силу». Он предложил идеальную тепловую машину.

Цикл Карно – самый эффективный цикл, имеющий максимальный КПД. 1 – 2 — изотермическое расширение. А ₁₂ = Q ₁ 2 – 3 – адиабатное расширение А ₂₃ = — ∆ U ₂₃ 3 – 4 — изотермическое сжатие A ₃₄= A сж = Q₂ 4 – 1 – адиабатное сжатие A ₄₁= ∆ U₄₁

«Тепловые двигатели >> «Тепловые двигатели наоборот» это : холодильник, кондиционер и тепловой насос. В них происходит передача тепла от более холодного к более нагретому, что требует совершения работы. Работу производит электродвигатель, подключенный к источнику тока.

«Тепловые двигатели наоборот», их принцип действия. Q ₁ — количество теплоты, отобранное у продуктов. Q₂ — количество теплоты, переданное воздуху в помещении. А — работа электрического тока. Рабочее тело Q ₁ A Q ₂=Q₁+A

Водный транспорт. Первый практически пригодный пароход построен в 1807 году Фультоном. (амер) Первый российский пароход «Елизавета» построен в 1815 году на заводе предпринимателя К.Н.Берда. Его первый рейс был из Петербурга в Кронштадт.

Железнодорожный транспорт. В 1829 году инженер Дж. Стефенсон построил лучший для того времени паровоз «Ракета». Первый тепловоз построен в 1924г. советским ученым Л.М.Таккелем. Тепловоз приводит в движение двигатель внутреннего сгорания

Автомобильный транспорт. Прообразом современного автомобиля считают самодвижущуюся повозку немецких механиков Г.Даймлера и Бенца. В 1883 году легкий ДВС был установлен на обычный конный экипаж.

Космический транспорт. 17 августа 1933 года в воздух поднялась на высоту около 400 м первая советская жидкостная ракета, сконструированная М.К.Тихомировым. 4 октября 1957 года был запущен первый искусственный спутник Земли.

Объемы выбросов загрязняющих веществ в атмосферу от автотранспорта по Республике Хакасия.

По теме: методические разработки, презентации и конспекты

Данную презентацию можно использовать как при объяснении нового материала так и при повторении, обобщении.

Урок изучения нового материала. Рассматриваются вопросы: работа пара и газа при расширении, основные части, принцип действия, коэффициент полезного действия тепловых двигателей, причины низ.

Презентация на тему:»Тепловые двигатели».

Презентация, конспект по теме «Тепловые двигатели. КПД».

Презентация по теме: «Тепловые двигатели&quot.

Методическая разработка урока физики «Тепловые двигатели», посвещена изучению действия теплового двигателя и показать положительную и отрицательную роль тепловых машин в жизни человека.Цель .

54. Обратимые и необратимые процессы, круговой процесс, тепловые двигатели, холодильные машины.

Всякий термодинамический процесс есть переход системы из одного состояния в другое и такой переход связан с нарушением равновесия системы. Равновесный процесс — процесс, состоящий из непрерывной последовательности равновесных состояний. Такие процессы на диаграмме состояния изображаются сплошной линией. Равновесным может быть только бесконечно медленный процесс. Обратимые процессы – процесс который допускает возвращение системы в исходное состояние, так что система может переходить через те же промежуточные состояния но в обратной последовательности, при этом, возвращаясь в исходное состояние, тела взаимодействуют с системой. Обратимые – бесконечно медленное расширение, сжатие газа. Необратимые – расширение газа в вакууме, явления теплопроводности, диффузии. Как правило все процессы необратимы. Круговым процессом(циклом) называется равновесный процесс, при котором система после ряда изменений возвращается в исходное состояние. Изобразим цикл на диаграмме pV:

На участке 1-2-3 газ расширяется, при этом, получая некоторое количество тепла (Q1) и совершает работу, численно равную площади вертикально заштрихованной фигуры. На участке 3-4-1 газ сжимается и совершает отрицательную работу, или над газом совершается положительная работа, при этом от газа отводится некоторое количество тепла(Q2). Работа совершаемая над газом численно равна площади горизонтально заштрихованной фигуры. После выполнения цикла газ возвращается в исходное состояние (dU=0) и 1-ое начало термодинамики имеет вид: δQA ; Работа δA численно равна площади фигуры 1-2-3-4, а

δQ= Q1— Q2 ; Прямым циклом называется равновесный круговой процесс, когда расширение газа происходит при давлениях больших, чем при сжатиях, т. е. на диаграмме pV такой цикл происходит в направлении движения часовой стрелки. В прямом цикле работа газа положительна и по такому циклу работают тепловые машины, при этом работа (δA) совершается за счет тепла (δQ) сообщенного газу. Обратный цикл протекает в направлении противоположном движению часовой стрелки, по обратному циклу работают холодильные машины, тогда работа газа отрицательна и от газа отводят некоторое количество тепла.

Тепловой машиной называют периодически действующий двигатель, совершающий работу за счет тепла получаемого извне.

Основные элементы тепловой машины:

—рабочее тело вещество

Пусть Q1 это тепло получаемое от нагревателя рабочим телом на участке1-2-3 , Q2 – тепло возвращаемое рабочим телом холодильнику, тогда на работу затрачивается тепло δQ= Q1— Q2

Вводится КПД (η) – отношение полезно использованного тепла (Q1— Q2) к теплу Q1 полученного от нагревателя.

КПД – отношение механической работы совершаемой тепловой машиной за один цикл к количеству тепла отнятого от нагревателя.

КПД паровоза 7%, трансформатора 98% η не больше 1

Холодильный коэффициент (ε) применяется для характеристики цикла при котором происходит перенос тепла от холодного к горячему телу. Холодильный коэффициент – отношение тепла (Q2) отнятого от охлаждаемого тела к работе (А) затрачиваемой на приведение машины в действие: ε = Q2/А= Q2/ Q1 Q2 ε > 1

Холодильная машина отбирает за один цикл от тела с температурой Т2 количество тепла Q2 и отдает телу с более высокой температурой Т1 количество тепла Q1, для обратимого обратного цикла Карно холодильный коэффициент максимален и равен: ε =Т2/(Т12)

Ссылка на основную публикацию
Adblock
detector