Энергетические режимы работы асинхронного двигателя

Энергетические режимы работы асинхронного двигателя

7.2 Режимы работы асинхронной машины

Характерной особенностью асинхронной машины является неравенство частот вращения магнитного поля статора n1 и ротора n2, так как только в этом случае вращающееся магнитное поле наводит в обмотке ротора ЭДС и на роторе возникает электромагнитный момент.

В соответствии с принципом обратимости асинхронные машины могут работать в двигательном, генераторном режимах и режиме электромагнитного торможения.

Двигательный режим. При включении обмотки статора в сеть трехфазного тока возникает вращающееся магнитное поле, которое, сцепляясь с короткозамкнутой обмоткой ротора, наводит в ней ЭДС. При этом в стержнях обмотки ротора появляются токи.

В результате взаимодействия этих токов с вращающимся магнитным полем на роторе возникают электромагнитные силы. Эти силы создают электромагнитный вращающий момент, под действием которого ротор приходит во вращение с частотой

где n1 – частота вращающегося поля статора; n2 – частота вращения ротора.

Если вал асинхронного двигателя механически соединить с валом какого-либо мexaнизма, то вращающий момент двигателя М, преодолев противодействующий момент, приведет его во вращение. Таким образом, электрическая мощность Р1 поступающая из сети, преобразуется в механическую мощность Р2 и передается исполнительному механизму.

Важным параметром является скольжение – величина, характеризующая разность частот вращения ротора и вращающегося поля статора:

Скольжение выражают в долях единицы или в процентах.

При включении асинхронного двигателя в сеть в начальный момент времени ротор под влиянием сил инерции неподвижен (n2=0) и скольжение при этом равно единице. В режиме холостого хода ротор вращается с частотой немного меньшей синхронной частоты вращения (n2 n1) и скольжение практически не отличается от нуля. С увеличением нагрузочного момента на валу асинхронного двигателя частота вращения ротора n2 уменьшается. То есть скольжение асинхронного двигателя зависит от механической нагрузки и может изменяться в диапазоне . Скольжение, соответствующее номинальной нагрузке двигателя, называют номинальным скольжениемsном. Для двигатeлeй общего назначения sном = 1÷8 %, при этом для двигателей большой мощности sном= 1 %, а для двигателей малой мощности Sном = 8 %.

Рисунок 7.2 – Режимы работы асинхронной машины

Генераторный режим. Если обмотку статора включить в сеть, а ротор асинхронной машины приводным двигателем вращать в направлении вращения магнитного поля статора с частотой n2>n1, то скольжение станет отрицательным, а ЭДС в обмотке ротора изменит свое направление. Электромагнитный момент на роторе также изменит свое направление, т. е. будет направлен встречно вращающемуся магнитному полю статора. В этом случае механическая мощность приводного двигателя будет преобразована в электрическую мощность P2.

Особенность асинхронного генератора в том, что вращающееся магнитное поле в нем создается реактивной мощностью Q трехфазной сети, в которую включен генератор и куда он отдает вырабатываемую активную мощность P2. Следовательно, для работы асинхронного генератора необходим источник переменного тока, при подключении к которому происходит возбуждение генератора (возбуждается вращающееся магнитное поле).

Режим торможения противовключением. Если у работающего трехфазного асинхронного двигателя поменять местами любую пару подходящих к статору из сети присоединительных проводов, то вращающееся поле статора изменит направление вращения на обратное. Но ротор асинхронной машины под действием сил инерции будет продолжать вращение в прежнем направлении, т. е. ротор и поле статора асинхронной машины будет вращаться в противоположных направлениях. Электромагнитный момент машины будет оказывать на ротор тормозящее действие.

Режимы работы асинхронных машин

Во всех режимах работы асинхронный машин всегда присутствует вращающееся магнитное поле статора. Оно создаётся тремя обмотками, сдвинутыми в пространстве относительно друг друга на 120 градусов, скорость этого вращения равна:

Формула скорости вращения магнитного поля статора

n1 – Скорость вращения магнитного поля статора;

f – Частота питающей сети (50Гц);

p – Количество пар полюсов (max 12 min 2);

Из формулы понятно, что скорость вращения магнитного поля статора асинхронной машины зависит от: частоты питающей сети, на территории стран СНГ она постоянна и равняется 50Гц, от количества пар полюсов в статоре асинхронной машины. Скорость вращения ротора синхронной машины напрямую зависит от скорости вращения магнитного поля статора.

Так же известно, что в их конструкции присутствует ротор, вращающаяся часть, которая может вращаться с различными скоростями. В целом можно сказать, что в асинхронных машинах скорость вращения изменяется только у ротора. Многочисленные наблюдения показали, что в зависимости от частоты вращения ротора асинхронной машины, с ней происходят различные явления. Для упрощения понимания этого вопроса, был введен параметр скольжение S – разность скоростей вращения магнитного поля статора, от скорости вращения ротора:

Скольжение

Эти скорости обозначают буквенно: n – скорость вращения ротора; n1 – скорость вращения магнитного поля.

Режим работы асинхронной машины зависит именно от этого значения разности скоростей вращения магнитного поля статора и скорости вращения ротора.

Различают следующие режимы работы асинхронных машин:

  • Режим двигателя;
  • Режим генератора;
  • Режим электромагнитного тормоза;
  • Режим динамического торможения;

Режим двигателя

Асинхронные двигатели стали очень популярна и наиболее часто применяемая в электроприводах. Режим электродвигателя применяется для приведения во вращение различные устройства, механизмы, насосы, лебедки, редуктора и т.д. путем преобразования электрической энергии в механическую. Как уже многим известно, что её принцип действия объясняется взаимодействием двух магнитных полей статора и ротора. Магнитное поле статора создается системой трехфазных обмоток и магнитопровода, расположенных непосредственно на статоре (корпусе асинхронной машины). Это поля является вращающимся, так как в трех фазной цепи, ток протекает из фазы А в фазу В, из фазы В в фазу С, а из фазы С обратно в фазу А. Обмотки каждой фазы располагают на статоре так, что бы равномерно заполнить всю окружность, т.е. окружность занимает 360 градусов, имея три обмотки, делим 360/3 получаем 120 градусов на каждую обмотку.

обмотки статора

Это вращающееся магнитное поле пронизывая ротор, индуцирует в нем ЭДС, так как ротор короткозамкнутый, то по нему протекает ток. Протекание тока вызывает образование у ротора собственного магнитного поля. Поле статора, которое вращается с скоростью n1 взаимодействует с полем ротора, которое является неподвижным, и старается остановить, затормозить поле статора. Так как ротор закреплен на подшипниках, он способен свободно вращаться вокруг своей оси. Получается, что магнитное поля статора притягивает поле ротора, увлекает его за собой с определенной силой, в результате чего и сам ротор начинает вращаться.

Особенностью этого режима является то, что скорость вращения магнитного поля статора и скорость вращения ротора не должны быть равными, тем более, скорость ротора всегда меньше. Если же каким-либо образом их скорости будут равными, то исходя из явления электромагнитной индукции, обязательна разность магнитного потока, пересекающего тот или иной контур, что и обеспечивается отставанием ротора от магнитного поля статора. Если же все-таки их скорости сравняются, по короткозамкнутой обмотке ротора перестанет протекать электрический ток, исчернит его магнитное поле и ротор не будит увлекаться полем статора. Скольжение в режиме электродвигателя должно быть положительным числом и не равным нулю.

Стоит добавить, что режим двигателя у асинхронных машин является самым часто используемым.

Режим генератора

Режим генератора у асинхронных машин является полной противоположностью режиму двигателя. Самым главным отличием является то, что при режиме двигателя, асинхронная машина потребляет из сети электрическую энергию. А в режиме генератора наоборот отдает в сеть выработанную электрическую энергию.

Режим генератора возможен только тогда, когда скорость вращения ротора n будет выше скорости вращающегося магнитного поля статора. В этом случаи скольжение S будит отрицательным. Для этого необходимо ускорить ротор синхронной машины, то есть посадить на вал ротора, какой-либо механизм (турбина, редуктор, другой двигатель).

режим генератора

Допустим ротор мы разогнали до 3500 оборотов в минуту, а скорость магнитного поля статора 3000 оборотов в минуту, определим скольжение:

Режим генератора у асинхронных машин не является часто используемым, и может применяться в узких специализированных областях, в маломощных электростанциях.

Стоит отметить, что при таком режиме работы, отдаваемая в сеть электроэнергия совпадает по частоте с частотой самой сети. Так как она зависит только от частоты вращения магнитного поля статора, которая как мы знаем не изменяется.

В использовании таких генераторов есть огромный плюс, в его устройстве отсутствуют скользящие контакты, вращающиеся обмотки, это обеспечивает надежную и долговременную эксплуатацию. Так же эти генераторы мало восприимчивы к коротким замыканиям в сети. Еще не маловажным условием работы является, наличие остаточной намагниченности ротора, которое усиливается конденсаторными установками, включенными в цепи статорных обмоток.

Режим электромагнитного торможения

Режим электромагнитного торможения является еще более специфичными специализированным. Вся суть этого режима в том, что если вращение ротора асинхронной машины не совпадает с направлением вращения магнитного поля статора, то ротор будит затормаживаться под действием этого магнитного поля статора. Такой режим возможен только при реверсивном подключении асинхронной машины, так как путем переключения двух фаз достигается изменение направления вращения магнитного поля статора, и используется в различных грузоподъемных и транспортировочных устройствах. Этот режим часто называют режимом торможения противотоком или противовключением. При таком режиме, если нам необходимо остановить двигатель, при полной остановке, статор необходимо отключить от сети, так как вал начнет вращаться в обратном направлении.

Режим динамического торможения

В таком режиме, асинхронная машина отключается от трех фазной сети, и на обмотки статора подается постоянный ток. Таким образом на статоре образуется постоянное магнитное поле (постоянный магнит), которое тормозит ротор двигателя.

Все выше представленные режимы работы асинхронных машин, кроме режима двигателя, являются специализированными, и используются только в определенных установках, устройствах, станках и т.д.

6 Режимы работы, энергетические диаграммы асинхронной машины

Режимы работы, энергетические диаграммы асинхронной машины

Читать еще:  Шевроле лачетти плавают обороты двигателя на холостом ходу какая причина

а другая часть — в виде магнитных потерь в сердечнике статора (первичной цепи):

оставшаяся часть мощности

представляет собой электромагнитную мощность, передаваемую посредством магнитного поля со статора на ротор. На схеме заме­щения этой мощности соответствует мощность в активном сопротив­лении вторичной цепи. Поэтому

Часть этой мощности теряется в виде электрических потерь в активном сопротивлении вторичной обмотки:

Остальная часть мощности Рэм превращается в механическую мощность Рмх, развиваемую на роторе:

Часть механической мощности теряется внутри самой машины в виде механических потерь (на вентиляцию, на трение в подшипниках и на щетках машин с фазным ротором, если эти щетки при работе не поднимаются), магнитных потерь в сердечнике ротора и добавочных потерь. Последние вызваны в основном высшими гармониками магнитных полей, которые возникают ввиду наличия высших гармоник н. с. обмоток и зубчатого строе­ния статора и ротора. Во-первых, высшие гармоники поля индук­тируют э.д.с. и токи в обмотках, в связи с чем появляются доба­вочные электрические потери. Эти потери заметны по величине только в обмотках типа беличьей клетки. Во-вторых, эти гармоники поля обусловливают добавочные магнитные потери на поверхности (поверхностные потери) и в теле зубцов (пульсационные потери) статора и ротора. Вращение зубцов ротора относительно зубцов статора вызывает пульсации магнитного потока в зубцах, и поэтому соответствующая часть потерь называется пульсационным и потерями. Магнитные потери в сердечнике ротора при нормальных рабочих режимах обычно очень малы и отдельно не учи­тываются.

Добавочные потери при­нимают равными 0,5% от подводимой мощности при номинальной нагрузке. Отметим, что в обмотках возникают также добавочные потери от вихревых токов в связи с поверхностными эффектами..

Полезная механическая мощность на валу, или вторичная мощность

Читать еще:  Большие обороты на холостом ходу при запуске двигателя

Сумма потерь двигателя.

К.п.д. двигателя мощностью Рн = 1 — 1000 кВт при номи­нальной нагрузке находится соответственно в пределах 0,72 — 0,95. Более высокие к. п. д. имеют двигатели большей мощности и с большей скоростью вращения.

Энер­гетическая диаграмма асинхронного двигателя.

Тормозные режимы асинхронных двигателей

Асинхронный двигатель может работать в следующих тормозных режимах: в режиме рекуперативного торможения, противовключения и динамическом.

Рекуперативное торможение асинхронного двигателя

Режим рекуперативного торможения осуществляется в том случае, когда скорость ротора асинхронного двигателя превышает синхронную.

Режим рекуперативного торможения практически применяется для двигателей с переключением полюсов и в приводах грузоподъемных машин (подъемники, экскаваторы и т.п.).

При переходе в генераторный режим вследствие изменения знака момента меняет знак активная составляющая тока ротора. В этом случае асинхронный двигатель отдает активную мощность (энергию) в сеть и потребляет из сети реактивную мощность (энергию), необходимую для возбуждения. Такой режим возникает, например, при торможении (переходе) двухскоростного двигателя с высокой на низкую скорость, как показано на рис. 1 а.

Рис. 1. Торможение асинхронного двигателя в основной схеме включения: а) с рекуперацией энергии в сеть; б) противовключением

Предположим, что в исходном положении двигатель работал на характеристике 1 и в точке а, вращаясь со скоростью ωуст1 . При увеличении числа пар полюсов двигатель переходит на характеристику 2, участок бс которой соответствует торможению с рекуперацией энергии в сеть.

Этот же вид торможения может быть реализован в системе преобразователь частоты – двигатель при останове асинхронного двигателя или при переходе с характеристики на характеристику. Для этого осуществляется уменьшение частоты выходного напряжения, а тем самым синхронной скорости ωо = 2π f / p .

В силу механической инерции текущая скорость двигателя ω будет изменяться медленнее чем синхронная скорость ωо , и будет постоянно превышать скорость магнитного поля. За счет этого и возникает режим торможения с отдачей энергии в сеть .

Рекуперативное торможение также может быть реализовано в электроприводе грузоподъемных машин при спуске грузов. Для этого двигатель включается в направлении спуска груза (характеристика 2 рис. 1 б).

После окончания торможения он будет работать в точке со скоростью – ωуст2 . При этом осуществляется процесс спуска груза с отдачей энергии в сеть.

Рекуперативное торможение является наиболее экономичным видом торможения.

Торможение асинхронного электродвигателя противовключением

Перевод асинхронного двигателя в режим торможения противовключением может быть выполнен двумя путями. Один из них связан с изменением чередования двух фаз питающего электродвигатель напряжения.

Читать еще:  Что плохого если перелил масло в двигатель

Допустим, что двигатель работает на характеристике 1 (рис. 1 б) при чередовании фаз напряжения АВС. Тогда при переключении двух фаз (например, В и С) он переходит на характеристику 2, участок аб которой соответствует торможению противовключением.

Обратим внимание на то обстоятельство, что при противовключении скольжение асинхронного двигателя изменяется от S = 2 до S = 1.

Ротор при этом вращается против направления движения поля и постоянно замедляется. Когда скорость спадает до нуля, двигатель должен быть отключен от сети, иначе он может перейти в двигательный режим, причем ротор его будет вращаться в направлении, обратном предыдущему.

При торможении противовключением токи в обмотке двигателя могут в 7–8 раз превышать соответствующие номинальные токи. Заметно уменьшается коэффициент мощности двигателя. О КПД в данном случае говорить не приходится, т.к. и преобразуемая в электрическую механическая энергия и энергия, потребляемая из сети, рассеиваются в активном сопротивлении ротора, и полезно используемой энергии в данном случае нет.

Короткозамкнутые двигатели кратковременно перегружаются по току. Правда, у них при (S > 1) вследствие явления вытеснения тока заметно возрастает активное сопротивление ротора. Это приводит к уменьшению и увеличению момента.

С целью увеличения эффективности торможения двигателей с фазным ротором в цепи их роторов вводят добавочные сопротивления, что позволяет ограничить токи в обмотках и увеличить момент.

Другой путь торможения противовключением может быть использован при активном характере момента нагрузки, который создается, например, на валу двигателя грузоподъемного механизма.

Допустим, что требуется осуществить спуск груза, обеспечивая его торможение с помощью асинхронного двигателя. Для этого двигатель путем включения в цепь ротора добавочного резистора (сопротивления) переводится на искусственную характеристику (прямая 3 на рис. 1).

Вследствие превышения моментом нагрузки Мс пускового момента Мп двигателя и его активного характера груз может опускаться с установившейся скоростью – ωуст2 . В этом режиме торможение скольжения асинхронного двигателя может изменяться от S = 1 до S = 2.

Динамическое торможение асинхронного двигателя

Для динамического торможения обмотки статора двигатель отключают от сети переменного тока и подключают к источнику постоянного тока, как это показано на рис. 2. Обмотка ротора при этом может быть закорочена, или в ее цепь включаются добавочные резисторы с сопротивлением R2д.

Рис. 2. Схема динамического торможения асинхронного двигателя (а) и схема включения обмоток статора (б)

Постоянный ток Iп, значение которого может регулироваться резистором 2, протекает по обмоткам статора и создает относительно статора неподвижное магнитное поле. При вращении ротора в нем наводится ЭДС, частота которой пропорциональна скорости. Эта ЭДС, в свою очередь, вызывает появление тока в замкнутом контуре обмотки ротора, который создает магнитный поток, также неподвижный относительно статора.

Взаимодействие тока ротора с результирующим магнитным полем асинхронного двигателя создает тормозной момент, за счет которого достигается эффект торможения. Двигатель в этом случае работает в режиме генератора независимо от сети переменного тока, преобразовывая кинетическую энергию движущихся частей электропривода и рабочей машины в электрическую, которая рассеивается в виде тепла в цепи ротора.

На рисунке 2 б показана наиболее распространенная схема включения обмоток статора при динамическом торможении. Система возбуждения двигателя в этом режиме является несимметричной.

Для проведения анализа работы асинхронного двигателя в режиме динамического торможения несимметричную систему возбуждения заменяют симметричной. С этой целью принимается допущение, что статор питается не постоянным током Iп, а некоторым эквивалентным трехфазным переменным током, создающим такую же МДС (магнитодвижущую силу), что и постоянный ток.

Электромеханическая и механические характеристики представлены на рис. 3.

Рис. 3. Электромеханическая и механические характеристики асинхронного двигателя

Характеристика расположена на рисунке в первом квадранте I, где s = ω / ωo – скольжение асинхронного двигателя в режиме динамического торможения. Механические характеристики двигателя расположены во втором квадранте II.

Различные искусственные характеристики асинхронного двигателя в режиме динамического торможения можно получить, изменяя сопротивление R2 д добавочных резисторов 3 (рис. 2) в цепи ротора или постоянный ток I п, подаваемый в обмотки статора.

Варьируя значения R2 д и I п, можно получить желаемый вид механических характеристик асинхронного двигателя в режиме динамического торможения и, тем самым, соответствующую интенсивность торможения асинхронного электропривода.

Мирошник А. И., Лысенко О. А.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Ссылка на основную публикацию
Adblock
detector