Эсу двигателя что это такое

Эсу двигателя что это такое

На сегодняшний день практически все выпускаемые двигатели внутреннего сгорания оборудованы электронной системой управления (ЭСУД). Автопроизводители уделяют особое внимание этой системе, так как добиться высокой мощности двигателя при одновременном снижении расхода топлива и выполнении жестких экологических требований возможно только с помощью очень точного и своевременного дозирования топлива и эффективного поджигания топливно-воздушной смеси на всех режимах работы двигателя.

Устройство ЭСУД усложняется с каждым годом, увеличивается число элементов, совершенствуются алгоритмы управления работой двигателя. Но в конструктивных элементах ЭСУД, как и в любой другой системе автомобиля, в процессе продолжительной эксплуатации неизбежно возникают различные отказы и неисправности. Происходит изменение электрических характеристик, нарушение регулировок, потеря работоспособности датчиков, их разъемов, предохранителей и проводов. Это приводит к существенному ухудшению работы двигателя и при несвоевременном устранении возникающих в ЭСУД неисправностей к полной потере им работоспособности.

Отсутствие в настоящее время обоснованных режимов технического обслуживания (ТО) электронных систем управления двигателем приводит к снижению эксплуатационной надежности и значительным затратам на поддержание этих систем в технически исправном состоянии.

В ходе выполненных исследований эксплуатационной надежности электронных систем управления двигателей 1.6 VTi Tiptronic (88 кВт), 1.6 THP Turbo Tiptronic (110 кВт) автомобилей марки Peugeot были выявлены элементы с наиболее часто возникающими отказами и неисправностями (рис. 1).

Как видно из рис. 1, наиболее распространенной неисправностью данной ЭСУД является отказ электронного термостата (20 %). Этот дефект связан с низким качеством материала, применяемого в качестве уплотнителя датчика температуры охлаждающей жидкости, встроенного в термостат. Неисправность устраняется заменой термостата, либо установкой отдельного датчика температуры вместо штуцера прокачки системы охлаждения.

Рис. 1. Диаграмма распределения основных неисправностей электронных систем управления двигателей 1.6 VTi Tiptronic (88 кВт), 1.6 THP Turbo Tiptronic (110 кВт) автомобилей марки Peugeot: 1 – электронный термостат (20 %); 2 – свеча зажигания (15 %); 3 – электромагнитный клапан системы изменения фаз газораспределительного механизма (ГРМ) (10 %); 4 – катушка зажигания (8 %); 5 – форсунка (4 %); 6 – электронная дроссельная заслонка (8 %); 7 – кислородный датчик (10 %); 8 – электронасос охлаждения турбокомпрессора (5 %); 9 – электроклапан управления давлением наддува (5 %); 10 – электроклапан аварийного сброса давления наддува (2 %); 11 – каталитический нейтрализатор (5 %); 12 – датчик давления наддува (4 %); 13 – электродвигатель системы изменения подъема клапанов ГРМ (4 %). Неисправности кислородных датчиков (10 %) и каталитического нейтрализатора (5 %) вызваны низким качеством используемого топлива

На отказы свечей зажигания приходится 15 % от общего количества отказов. В большинстве случаев отказ свечей связан с использованием топлива низкого качества либо нарушением периодичности проведения ТО.

Электромагнитный клапан системы изменения фаз газораспределения (10 % отказов) предназначен для регулирования давления масла, подаваемого на фазорегулятор распределительного вала. Отказ данного элемента зачастую связан с его загрязнением металлическими частицами, содержащимися в моторном масле.

Для поддержания ЭСУД в работоспособном состоянии необходимо соблюдать определенные условия эксплуатации электронных элементов. Электронные компоненты, жгуты проводов и контакты необходимо поддерживать в технически исправном состоянии. Разъемы датчиков должны быть без следов коррозии, проводка – чистой, чтобы обеспечить передачу сигналов к электронному блоку управления (ЭБУ) без искажений и др.

Кроме рассмотренных выше неисправностей электронной части работоспособность системы управления двигателем зависит от состояния механических и гидромеханических элементов. Некоторые нарушения технического состояния двигателей или регулировок в его системах вызывают неисправности, ошибочно принимаемые за неисправности элементов системы управления двигателем. Это может быть связано с уменьшением давления в конце такта сжатия, подсосом воздуха, ограничением проходимости системы выпуска, нарушением фаз газораспределения, низким качеством используемого топлива, несоблюдением периодичности проведения технического обслуживания [1].

Электронный блок управления современным двигателем представляет собой цифровой микропроцессор с функцией самодиагностики (рис. 2). При работе двигателя ЭБУ постоянно опрашивает все датчики, исполнительные устройства и при появлении неисправности заносит в свою память код (от двузначного до пятизначного), соответствующий неисправности данного вида.

В результате выполненных исследований эксплуатационной надежности ЭСУД были выявлены основные неисправности этой системы, признаки их возникновения, а также влияние этих неисправностей на работу двигателя (таблица).

Рис. 2. Структурная схема электронного блока управления двигателем

Основные неисправности элементов ЭСУД

Влияние на работу двигателя

1. Электронный термостат (датчик температуры охлаждающей жидкости)

Стрелка температуры охлаждающей жидкости на панели приборов при непрогретом двигателе в красной зоне. Вентилятор охлаждения работает постоянно на второй скорости. Затруднен запуск двигателя

Электронный блок управления двигателем (ЭБУД) не учитывает показания датчика температуры ОЖ при расчете времени впрыска топлива в цилиндр, ограничивает максимальную частоту вращения коленчатого вала (КВ) до 3500об/мин. Увеличивается расход топлива и выбросы вредных веществ в окружающую среду

2. Свеча зажигания

Двигатель работает неустойчиво, сильные вибрации в двигателе и кузове. Затруднен запуск холодного двигателя

Значительно уменьшается мощность двигателя. Увеличивается расход топлива и выбросы вредных веществ в окружающую среду

3. Электромагнитный клапан системы изменения фаз ГРМ

Двигатель работает неустойчиво на холостом ходу (преимущественно после пуска холодного ДВС)

Незначительно снижается мощность двигателя

4. Катушка зажигания

Двигатель работает неустойчиво, вибрации в двигателе и кузове. Затруднен запуск холодного двигателя

Заметно падает мощность двигателя. Увеличивается расход топлива и выбросы вредных веществ в окружающую среду

5. Электромагнитная форсунка

Двигатель работает неустойчиво, сильные вибрации в двигателе и кузове. Затруднен запуск холодного двигателя

Существенно уменьшается мощность двигателя. Увеличивается расход топлива и выбросы вредных веществ в окружающую среду

6. Электронная дроссельная заслонка

Частота вращения КВ двигателя не поднимается выше 1500 об/мин. Вентилятор охлаждения работает постоянно на второй скорости

Значительно снижается мощность двигателя

7. Кислородный датчик

Двигатель работает неравномерно на холостом ходу

Увеличивается расход топлива и выбросы вредных веществ в окружающую среду

8. Электронасос охлаждения турбокомпрессора

Включается контрольная лампа CHECK ENGINE на панели приборов

На работе двигателя сказывается не значительно. При несвоевременном устранении неисправности сокращается ресурс турбокомпрессора

9. Электроклапан управления давлением наддува

Ухудшаются динамические характеристики автомобиля

Значительно уменьшается мощность двигателя при движении с частичной или полной нагрузкой. Неоптимальный состав смеси. Увеличивается расход топлива и выбросы вредных веществ

10. Клапан аварийного сброса давления наддува

Снижаются динамические характеристики автомобиля при движении с полной нагрузкой

Значительно снижается мощность при работе с полной нагрузкой на высоких оборотах КВ двигателя

11. Каталитический нейтрализатор

Ухудшаются динамические характеристики автомобиля

Значительно падает мощность двигателя при движении с частичной или полной нагрузкой. Увеличивается расход топлива и выбросы вредных веществ в окружающую среду

12. Датчик давления воздуха во впускном коллекторе

Двигатель работает неустойчиво

Незначительно уменьшается мощность двигателя, неоптимальный состав смеси. Увеличивается расход топлива и выбросы вредных веществ в окружающую среду

13. Электродвигатель системы изменения подъема клапанов ГРМ

Затруднен или невозможен запуск двигателя

Значительно снижается мощность двигателя. Ограничивается частота вращения КВ двигателя

Для своевременного выявления и устранения возникающих в ЭСУД отказов и неисправностей была разработана методика диагностирования этой системы, в соответствии с которой определение технического состояния ЭСУД осуществляется в следующей последовательности.

  1. Считывание кодов неисправностей, хранящихся в памяти ЭБУД. Универсальным способом получения кода неисправности является использование специального диагностического устройства (сканера), подключаемого к диагностическому гнезду разъема ЭБУ или к специальному диагностическому разъему, вынесенному в доступное место. После считывания кодов диагност, опираясь на свой опыт либо применяя техническую документацию, определяет наиболее вероятные зоны ЭСУД, в которых предположительно произошел отказ.
  2. Контроль переменных (изменяемых) параметров при работе двигателя с помощью сканера и сравнение их с номинальными значениями. Это позволяет получить более конкретную информацию о характере неисправности, причине ее появления.
  3. На основе собранной с помощью сканера информации о неисправности с использованием технической документации диагност определяет, какой из элементов системы вероятнее всего неисправен.
  4. Проверка предположительно неисправного элемента системы с помощью диагностического сканера путем проведения контрольных тестов.
  5. Проверка электрического питания элемента. Не во всех случаях через контрольный тест можно определить, исправен ли тот или иной элемент. В таких случаях необходимо проводить дополнительные проверки: электрического питания элемента, целостность электропроводки, отсутствие коротких замыканий, различного рода помех, механических повреждений и т.д. В некоторых случаях необходима проверка электрического питания датчика, его электропроводки, отсутствие коррозии в электрических соединениях. В современных ЭСУД присутствуют элементы, диагностирование которых затруднено, поэтому в таких случаях определить неисправность возможно только с помощью замены элемента заведомо исправным.
  6. Проверка электронного блока управления. Кроме рассмотренных выше отказов датчиков и исполнительных элементов ЭСУД возникают неисправности, связанные с работой самого ЭБУ. При невозможности считывания кодов неисправности, записанных в память блока управления, проверяется электрическое питание блока управления, целостность электропроводки диагностического разъема, отсутствие коротких замыканий и исправность диагностического оборудования. Блок управления двигателем признается неисправным, если диагностическая цепь исправна, блок управления получает необходимое электрическое питание, отсутствует связь блока управления с диагностическим оборудованием.
Читать еще:  4g72 что за двигатель на паджеро 2

Рис. 3. Алгоритм диагностирования исполнительных элементов ЭСУД

Процесс диагностирования ЭСУД является одним из самых сложных видов работ при техническом обслуживании и текущем ремонте автомобиля, требующим от исполнителя знаний конструкции ДВС, устройства и работы ЭСУД, умения пользоваться диагностическим оборудованием и технической документацией, а также практических навыков в ремонте и обслуживании автомобилей. Как показывает практика, системы самодиагностики автомобилей в настоящее время несовершенны, поэтому вопросы диагностирования и прогнозирования отказов ЭСУД актуальны и требуют дальнейшей проработки и развития.

Для уменьшения трудоемкости диагностических работ был разработан алгоритм поиска неисправностей исполнительных элементов ЭСУД (рис. 3).

Применение разработанной методики диагностирования элементов ЭСУД на станциях технического обслуживания автомобилей позволяет уменьшить трудоемкость диагностических работ, сократить время, затрачиваемое на поиск неисправности, и снизить затраты на поддержание автомобилей в технически исправном состоянии.

Рецензенты:

Кульчицкий А.Р., д.т.н., профессор, главный специалист ООО «Завод инновационных продуктов» КТЗ, г. Владимир;

Гоц А.Н., д.т.н., профессор кафедры «Тепловые двигатели и энергетические установки», Фгбоу впо «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ) Министерства образования и науки РФ, г. Владимир.

Центр информационных и интеллектуальных систем

Разработка электронных систем управления для любых типов двигателей, автоматических трансмиссий, гибридных и электрических автомобилей.

  1. Главная
  2. Направления
  3. Разработка и создание
  4. Центр информационных и интеллектуальных систем
  5. Выполненные работы
  6. Электронная система управления газовым двигателем (ЭСУД)

Электронная система управления газовым двигателем (ЭСУД)

Ведется разработка и отработка электронной системы управления газовым двигателем (ЭСУД), предназначенной для управления газовыми модификациями конвертированных рядными шестицилиндровыми дизельными двигателями производства ОАО «ЯМЗ», выполняющих требования Правил ЕЭК ООН №49-04В2 (Экологический класс 5) по удельным выбросам вредных веществ с ОГ для автобусов и грузовых автомобилей с системой каталитической нейтрализации отработавших газов (ОГ), а также были выполнены следующие работы:

  • Разработано техническое задание на электронный блок управления (ЭБУ) для системы управления с обратной связью по содержанию кислорода в отработавших газах, а также управлением зажиганием с обратной связью по детонации для газовых двигателей.
  • Разработана конструкторская документация на жгут проводов для электронной системы управления двигателем (ЭСУД).
  • Выбраны основные компоненты ЭСУД и изготовлен жгут проводов.
  • Разработана конструкторская документация на ЭБУ.
  • Разработаны и изготовлены опытные образцы ЭБУ для газовых двигателей с распределенным впрыском газа.
  • Подготовлено базовое программное обеспечение для проведения дальнейших работ по адаптации блоков управления для газовых двигателей с распределенным впрыском газа и нейтрализацией отработавших газов.
  • работу двигателя на всех режимах при достижении требуемого уровня топливной экономичности, пусковых и ездовых качеств укомплектованного данной системой транспортного средства, а также соответствие требованиям Правил ЕЭК ООН №49-04В2 (Экологический класс 5) по удельным выбросом вредных веществ с ОГ;
  • обеспечение функций диагностики технического состояния двигателя и его систем;
  • согласованного взаимодействия системы управления двигателем с системами управления автомобилем с целью обеспечения оптимального управления и безопасности движения;
  • поддержания вспомогательных функций управления автомобильными агрегатами и устройствами (иммобилайзер, кондиционер, связь с автоматической трансмиссией и др.);
  • защиту двигателя от работы в недопустимых с точки зрения обеспечения его работоспособности режимах;
  • управление при неисправностях в цепях датчиков и исполнительных устройств.

Функциональная схема системы управления приведена на рисунке.

ЭСУД в составе газового двигателя выполняет следующие функции:

  • управление пуском и остановом двигателя;
  • управление топливоподачей без обратной связи по содержанию кислорода в отработавших газах;
  • управление топливоподачей с обратной связью по содержанию кислорода в отработавших газах;
  • управление топливоподачей и зажиганием на всех режимах работы двигателя (холостой ход (ХХ), частичные нагрузки (ЧН), режим мощностного обогащения (МО), принудительный холостой ход (ПХХ);
  • компенсацию изменения напряжения бортовой сети (управление временем накопления энергии в катушках зажигания и длительностью импульсов впрыска);
  • поддержание стабильной частоты вращения двигателя на режимах холостого хода;
  • ограничение максимальной частоты вращения двигателя;
  • управление клапаном рециркуляции ОГ;
  • защита двигателя при аварийных режимах работы;
  • управление двигателем в аварийных режимах работы;
  • централизованная диагностика компонентов системы;
  • сигнализация об аварийных и критических режимах работы двигателя и системы управления.

Структурная схема ЭСУД транспортным газовым двигателем представлена на рисунке ниже и состоит из следующих компонентов:

  • электронный блок управления (ЭБУ), поз. 1;
  • жгут проводов, поз. 2;
  • датчик углового положения коленчатого вала, поз. 13;
  • датчик углового положения распределительного вала, поз. 10;
  • датчик температуры охлаждающей жидкости, поз. 12;
  • датчик давления наддувочного воздуха, поз. 7;
  • датчик температуры газового топлива, поз. 11;
  • датчик давления газового топлива в магистрали высокого давления, поз. 5;
  • датчик давления газа в газовой распределительной магистрали, поз. 6;
  • управляющий и диагностический датчики кислорода, поз. 9;
  • датчики детонации, поз. 8;
  • дроссельная патрубка с электроприводом дроссельной заслонки, поз. 14;
  • датчик скорости транспортного средства;
  • электронная педаль акселератора, поз. 20;
  • электромагнитные дозаторы газового топлива (газовых форсунок), поз. 4;
  • катушки зажигания, поз. 3;
  • высоковольтные провода;
  • свечи зажигания, поз. 19;
  • клапаны рециркуляции отработавших газов, поз. 16;
  • магистральный клапан высокого давления, поз. 18;
  • запорные клапаны отключения подачи газового топлива, поз. 15.

Структурная схема ЭСУД

Разработанный вариант макетного образца ЭБУ в рамках данной работы,представлен на рисунке «Макетный образец ЭБУ», и является центральным устройством системы управления двигателем. ЭБУ принимает информацию от датчиков,преобразовывает её во входном интерфейсе устройства ввода/вывода (УВВ), передает в центральное вычислительное устройство (ЦВУ) микроконтроллера для решения задач управления двигателем, запрограммированных в постоянном запоминающем устройстве (ПЗУ) ЦВУ по определенным алгоритмам. Контроллер управляет исполнительными устройствами, такими как: газовые форсунки, катушки зажигания, электропривод дроссельной заслонки, нагреватель датчика кислорода, клапан рециркуляции отработавших газов, магистральный клапан высокого давления, запорные клапаны с различными реле. БУ выполняет функцию диагностики системы, определяя наличие неисправностей элементов системы управления и предупреждает о них включением диагностической лампы «CheckEngine» (проверь двигатель) и сохраняет в своей памяти диагностические коды, обозначающие характер неисправности.

Макетный образец ЭБУ.

Описание общей структуры алгоритма управления газовым двигателем реализуемый в системе управления газовым двигателем алгоритм управления обеспечивает достижение на транспортном средстве заданных мощностных, экономических и экологических показателей, а также требуемых ездовых качеств.

Основные функции алгоритма управления газовым двигателем

ЭСУД газовым двигателем должна обеспечивать выполнение требований по выбросу токсичных веществ с отработавшими газами за счет оптимизации топливо- и воздухоподачи, а также угла опережения зажигания следующими действиями:

  • управления пуском и прогревом двигателя;
  • управления частотой вращения коленчатого вала на холостом ходу с учетом температуры охлаждающей жидкости независимо от сопротивления вращению;
  • ограничения предельной частоты вращения коленчатого вала;
  • управления топливоподачей на всех режимах, в том числе с обратной связью по содержанию кислорода в отработавших газах, с учетом температуры охлаждающей жидкости, частоты вращения, нагрузки, положения дроссельной заслонки, ускорения;
  • управления углом опережения зажигания с учетом вышеперечисленных факторов и, кроме того, с использованием обратной связи по детонации;
  • управления временем накопления энергии в катушке зажигания;
  • выявления неисправностей электрических цепей датчиков и исполнительных устройств, предупреждение водителя об их наличии включением сигнальной лампы;
  • перехода при неисправности датчиков и исполнительных устройств на резервный режим управления, обеспечивающий возможность продолжения движения автомобиля с наименьшим ухудшением показателей;
  • накапливание и вывод диагностической сервисной информации;
  • осуществления режимов функциональной диагностики исполнительных устройств при проведении работ по диагностированию и устранению неисправностей;
  • осуществления функциональной диагностики антитоксичных устройств на работающем двигателе (каталитического нейтрализатора, системы рециркуляции отработавших газов), а также наличия пропусков воспламенения.
Читать еще:  Что сделать чтобы не текло масло из двигателя

Для проведения предварительных калибровок ЭСУД был подготовлен газовый двигатель с распределенным фазированным впрыском газа, представленный на рисунке ниже.

Газовый двигатель, установленный на моторном стенде и оборудованный ЭСУД для проведения работ по адаптации.

Выполнены предварительных адаптационные работы на моторном стенде, калибровки управления: константы алгоритма управления, одномерные матрицы, а также матрицы коррекции топливоподачи и угла опережения зажигания по положению дроссельной заслонки.

На рисунке ниже представлена базовая матрица топливоподачи, зависимость длительности впрыска топлива TAU, (мс.) от циклового наполнения Gц, (мг/цикл) и частоты вращения коленчатого вала двигателя n, 1/мин.

На рисунке ниже представлена базовая матрица угла опережения зажигания (УОЗ), зависимость TETA, (ºп.к.в.) от циклового наполнения Gц, (мг/цикл) и частоты вращения коленчатого вала двигателя n, 1/мин.

Базовая матрица топливоподачи.

Базовая матрица УОЗ.

В ходе выполнения данной работы, наряду с исходной версией программного обеспечения, для блока управления газовым двигателем было создано программное обеспечение для выполнения адаптационных и калибровочных работ по системе управления. Начальное окно программы содержит основные элементы контроля блока управления, информационные данные, а также инструменты для запуска последующих управляющих окон. Начальное окно «настройки» представлено на рисунках ниже.

Ендачев Денис Владимирович

Исполнительный директор по информационным и интеллектуальным системам

Электронная система управления двигателем

Электронная система управления двигателем

ЭСУД применяемые на автомобилях

ЭСУД — это электронная система управления двигателем или по-простому компьютер двигателя. Он считывает данные с датчиков двигателя и передает указания на исполнительные системы. Это все делается, что двигатель работал в оптимальном для него режиме и сохранял нормы токсичности и потребления топлива.

Обзор электронной системы управления двигателем будет приводиться на примере инжекторных автомобилей ВАЗ. Разобьем ЭСУД на некоторые группы по критериям.

Производитель электронной системы управления

Для автомобилей автозавода ВАЗ использовались системы управления двигателем компаний Bosch, General Motors и СУД отечественной производства. Если вы хотите заменить какую-нибудь деталь системы впрыска, например производства Bosch на производства Bosch, то это окажется невозможным, т.к. детали невзаимозаменяемые. А вот отечественные детали впрыска топлива иногда оказываются аналогичными деталям иностранного производства.

Разновидности контроллеров управления двигателем

На вазовских автомобилях можно встретить следующие типы контроллеров:

  • Январь 5 — производство Россия,
  • M1.5.4 — производство Bosch,
  • МР7.0 — производство Bosch,

Кажется, что контроллеров не много, а на самом деле все сложней. Для примера, контроллер M1.5.4 для системы без нейтрализатоpa не подходит для системы с нейтрализатором. И они считаются невзаимозаменяемыми. Контроллер МР7.0 для системы ‘Eвpo-2’ не может быть установлен на автомобиль ‘Евро-3’. Хотя установить контроллер МР7.0 для системы ‘Eвpo-3’ на автомобиль с экологическими нормами токсичности ‘Евро-2’ возможно, но для этого потребуется перепрошить программное обеспечение контроллера.

Типы впрыска

По этому параметру можно разделить системы впрыска на систему центрального (одноточечного) и распределенного (многоточечного) впрыска топлива. В системе центрального впрыска форсунка подает топливо во впускной трубопровод перед дроссельной заслонкой. В системах распределенного впрыска каждый цилиндр имеет свою форсунку, которая подает топливо непосредственно перед впускным клапаном.

Системы распределенного впрыска разделяются на фазированные и не фазированные. В не фазированных системах впрыск топлива может осуществляться или всеми форсунками в одно время или парами форсунок. В фазированных системах впрыск топлива осуществляется последовательно каждой форсункой.

Нормы токсичности

В разные времена собирались автомобили, который соответствовали требованиям стандартов по токсичности отработавших газов от ‘Евро-0’ до ‘Евро-4’. Автомобили, который соответствуют нормам ‘Евро-0’ выпускаются без нейтрализаторов, системы улавливания паров бензина, датчиков кислорода.

Отличить автомобиль в комплектации ‘Евро-3’ от автомобиля с комплектацией ‘Евро-2’ можно по наличию датчика неровной дороги, внешнему виду адсорбера, а также по числу датчиков кислорода в выпускной системе двигателя (в комплектации ‘Евро-2’ он один, а в комплектации ‘Евро-3’ их два).

Определения и понятия

Контроллер — главный компонент электронной СУД. Оценивает информацию от датчиков о текущем режиме работы двигателя, выполняет достаточно сложные вычисления и управляет исполнительными механизмами.

Датчик массового расхода воздуха (ДМРВ) — преобразует значение массы воздуха, поступающего в цилиндры, в электрический сигнал. Подробнее в статье что такое ДМРВ.

Датчик скорости — преобразует значение скорости автомобиля в электрический сигнал.

Датчик кислорода — преобразует значение концентрации кислорода в отработавших газах после нейтрализатора в электрический сигнал. Подробнее в статье что такое датчик кислорода.

Датчик кислорода управляющий — преобразует значение концентрации кислорода в отработавших газах до нейтрализатора в электрический сигнал.

Датчик неровной дороги — преобразует величину вибрации кузова в электрический сигнал.

Датчик фаз — его сигнал информирует контролер о том, что поршень первого цилиндра находится в ВМТ (верхняя мертвая точка) на такте сжатия топливовоздушной смеси.

Датчик температуры охлаждающей жидкости — преобразует величину температуры охлаждающей жидкости в электрический сигнал.

Датчик положения коленвала — преобразует угловое положение коленвала в электрический сигнал.

Датчик положения дроссельной заслонки — преобразует значение угла открытия дроссельной заслонки в электрический сигнал.

Датчик детонации — преобразует величину механических шумов двигателя в электрический сигнал.

Модуль зажигания — элемент системы зажигания, накапливающий энергию для воспламенения смеси в двигателе и обеспечивает высокое напряжение на электродах свечи зажигания.

Форсунка — элемент системы топливоподачи, обеспечивающий дозирование топлива.

Регулятор давления топлива — элемент системы топливоподачи, обеспечивающий постоянство давления топлива в подающей магистрали.

Адсорбер — главный элемент системы улавливания паров бензина.

Модуль бензонасоса — элемент системы топливоподачи, обеспечивающий избыточное давление в топливной магистрали. Подробнее в статье что такое бензонасос?.

Клапан продувки адсорбера — элемент системы улавливания паров бензина, управляющий процессом продувки адсорбера.

Топливный фильтр — элемент системы топливоподачи, фильтр тонкой очистки.

Нейтрализатор — элемент системы впрыска двигателя для снижения токсичности выхлопных газов. В результате химической реакции с кислородом в присутствии катализатора оксид углерода, углеводороды СН и окислы азота превращаются в азот, воду, а также в двуокись углерода. Подробнее в статье что такое катализатор?.

Диагностическая лампа — элемент системы бортовой диагностики, которая информирует водителя о наличии неисправности в СУД.

Диагностический разъем — элемент системы бортовой диагностики, для подключения диагностического оборудования.

Регулятор холостого хода — элемент системы поддержания холостого хода, который регулирует на холостом ходу подачу воздуха в двигатель.

Автомобильный справочник

для настоящих любителей техники

Управление работой дизельного двигателя

В дизельном двигателе топливо всегда впрыскивается непосредственно в камеру сгорания под давлением от 200 до 2200 бар. В зависимости от конструкции, в двигателях с непрямым впрыском топливо впрыскивается в форкамеру под относительно низким дав­лением (менее 350 бар). В системах прямого впрыска топлива, получивших наибольшее распространение, топливо впрыскивается в неразделенную камеру сгорания под высо­ким давлением (до более чем 2200 бар). Вот о том, как происходит управление работой дизельного двигателя, мы и поговорим в этой статье.

Управление работой дизельного двигателя

Конструктивные требования к работе дизельного двигателя

Вырабатываемая дизельным двигателем мощ­ность Р определяется крутящим моментом на коленчатом вале, передаваемым сцеплению, и частотой вращения коленчатого вала. Кру­тящий момент на коленчатом вале равняется крутящему моменту, создаваемому в процессе сгорания топлива, за вычетом механических потерь на трение, газообмен и привод вспомо­гательных агрегатов. Крутящий момент созда­ется в процессе силового цикла, и при наличии достаточного количества воздуха определятся следующими переменными: массой пода­ваемого топлива, моментом начала сгорания топлива, определяемым началом впрыска, и процессами впрыска и сгорания топлива.

Кроме того, максимальный, зависящий от частоты вращения коленчатого вала кру­тящий момент ограничен требованиями к ограничению дымности выхлопа, давлением в цилиндрах, тепловой нагрузкой различных компонентов и величиной механической на­грузки всей кинематической цепи привода.

Основная функция системы управления дизельным двигателем

Основной функцией системы управления дви­гателем является регулирование создаваемого двигателем крутящего момента или, при некото­рых условиях, регулирование частоты вращения коленчатого вала в пределах допустимого диа­пазона (например, оборотов холостого хода).

В дизельном двигателе очистка отработав­ших газов и подавление шума осуществляются в значительной степени внутри самого двига­теля, т.е. путем управления процессом сгорания топлива. Это, в свою очередь, осуществляется системой управления двигателем посредством управления следующими переменными:

  • Заряд смеси в цилиндре;
  • Объем заряда смеси, подаваемого во время такта впуска;
  • Состав заряда смеси (рециркуляция отра­ботавших газов);
  • Движение заряда (завихрения на впуске);
  • Момент начала впрыска;
  • Давление впрыска;
  • Распределение впрыска топлива (напри­мер, предварительный впрыск, разделен­ный впрыск топлива и т.д.).

До начала 1980-х годов управление впры­ском топлива и зажиганием осуществлялось исключительно при помощи механических устройств. Например, в топливном насосе вы­сокого давления количество подаваемого то­плива регулируется в зависимости от нагрузки двигателя и частоты вращения коленчатого вала путем поворота плунжера насоса, имею­щего спиральную канавку. В случае механиче­ского регулирования начало впрыска/подачи топлива регулируется при помощи центробеж­ного регулятора (зависимого от скорости вра­щения). Также применялись гидравлические системы регулирования, в которых количество топлива менялось посредством регулирова­ния давления в зависимости от нагрузки и частоты вращения коленчатого вала.

Точность регулирования

В настоящее время, в связи со строгими требованиями законодательства в отношении ограничения токсичности выбросов, требуется очень точное регулирование количества впрыскиваемого топлива и момента начала впрыска в зависимости от таких переменных, как темпе­ратура, частота вращения коленчатого вала, на­грузка и высота над уровнем моря. Это может быть обеспечено только при помощи электрон­ных систем управления. Сегодня электронные системы управления полностью вытеснили механические. Это единственный метод управ­ления, позволяющий осуществлять непрерывный мониторинг функций системы впрыска топлива, влияющих на содержание вредных веществ в выбросах автомобиля. В некоторых случаях законодательство требует также нали­чия системы бортовой диагностики.

Регулирование количества впрыскиваемого топлива и момента начала впрыска осуществля­ется системами EDC (электронная система управ­ления дизельным двигателем) при помощи электромагнитных клапанов высокого или низкого давления, или иных исполнительных устройств. Регулирование подачи топлива, т.е. количества топлива на один градус поворота коленчатого вала, может осуществляться косвенным образом, например, при помощи сервоклапана и регулиро­вания величины подъема игольчатого клапана.

Электронная система управления дизельным двигателем

Электронная система управления дизель­ным двигателем позволяет осуществлять точную и дифференцированную модуляцию параметров процесса впрыска топлива. Это единственный способ удовлетворить самые разные требования, предъявляемые к совре­менному дизельному двигателю.

Обзор электронной системы управления дизельным двигателем

Конструктивные требования

Снижение расхода топлива и содержания вред­ных веществ (NOx, СО, НС, твердых частиц) в отработавших газах с одновременным повы­шением эффективной мощности двигателя являются главными задачами, стоящими перед разработчиками дизельных двигателей. За по­следние годы это привело ко все большему рас­пространению систем прямого впрыска топлива (DI), в которых давление впрыска значительно больше, чем в системах непрямого впрыска (IDI) с вихрекамерами или форкамерами. Кроме того, большое влияние оказывают возросшие требования к уровню комфорта современных автомобилей. Все более строгие требования предъявляются к уровню шума. В результате также значительно возросли требования, предъ­являемые к системам управления двигателем и впрыска топлива, в частности в отношении:

  • Высоких давлений впрыска;
  • Формирования параметров;
  • Предварительного и, при необходимости, последующего впрыска топлива;
  • Регулирования количества впрыскивае­мого топлива, давления наддувочного воз­духа и момента начала впрыска, в зависи­мости от условий работы двигателя;
  • Подачи дополнительного, зависимого от температуры, количества топлива при пу­ске двигателя;
  • Независимого от нагрузки регулирования частоты вращения коленчатого вала при работе двигателя на холостом ходу;
  • Регулируемой рециркуляции отработав­ших газов;
  • Системы круиз-контроля;
  • Высокой точности регулирования момента начала впрыска топлива и количества впрыскиваемого топлива на протяжении всего срока службы двигателя.

В обычных механических системах регули­рования частоты вращения коленчатого вала используется ряд регулирующих устройств, назначением которых является адаптация к различным условиям работы двигателя. Тем не менее, такие системы ограничиваются простым контуром регулирования, и существует ряд важ­ных переменных величин, которых они не могут учитывать или не могут достаточно быстро реа­гировать на их изменения. В связи с возросшими требованиями, относительно простые системы управления с использованием электрических исполнительных устройств развились в слож­ные электронные системы управления двигате­лем, способные обрабатывать большие объемы данных в режиме реального времени. Они могут составлять часть общей электронной системы управления автомобилем. Благодаря возросшей степени интеграции электронных компонентов, блоки управления чрезвычайно компактны.

Принципы действия системы ЕДС на дизельном двигателе

Электронная система управления дизельным двигателем (EDC) способна обеспечивать вы­полнение всех вышеуказанных требований, благодаря применению микропроцессоров.

В отличие от автомобилей с дизельными двигателями с обычным рядным или распреде­лительным топливным насосом высокого дав­ления, водитель автомобиля с EDC не оказывает прямого влияния на количество впрыскивае­мого топлива при помощи педали акселератора и троса управления дроссельной заслонкой. Вместо этого количество впрыскиваемого то­плива определяется рядом переменных величин. Это, например, команды водителя (положение педали подачи топлива), условия работы дви­гателя, температура двигателя, вмешательства других систем (например, системы управления тяговым усилием) и состав отработавших газов.

Момент начала впрыска также может регулиро­ваться. Все это требует наличия всеобъемлющей концепции системы мониторинга, определяющей несоответствия и инициирующей соответствую­щие действия (например, ограничение крутящего момента или переход на аварийный режим в диапазоне оборотов холостого хода). Отсюда следует, что электронная система управления ди­зельным двигателем должна содержать большое количество контуров регулирования.

Электронная система управления дизель­ным двигателем может осуществлять обмен данными с другими электронными системами, такими как система регулирования тягового усилия (TCS), электронная система управле­ния трансмиссией (ЕТС) или система курсо­вой устойчивости (ESP). Отсюда следует, что система управления двигателем может быть встроена в общую систему управления авто­мобилем, приобретая новые функции, такие как снижение крутящего момента двигателя во время переключения передач автоматической трансмиссией или регулирование крутящего момента для компенсации пробуксовки колес.

Система EDC полностью интегрирована в си­стему диагностики автомобиля. Она отвечает всем требованиям OBD (система бортовой диа­гностики) и E0BD (европейские нормы OBD).

Блоки системы управления дизельным двигателем

Электронная система управления дизельным двигателем (EDC) разделена на три блока (см. рис. «Компоненты электронной системы управления дизельным двигателем (EDC)» ).

Датчики и генераторы управляющих сигна­лов определяют условия работы двигателя (на­пример, частоту вращения коленчатого вала) и значения управляющих сигналов (например, по­ложение выключателей). Они преобразуют фи­зические переменные в электрические сигналы.

Блок управления двигателем обрабатывает сигналы датчиков и генераторов управляю­щих сигналов в соответствии с заложенными в нем алгоритмами вычислений (алгоритмами управления с обратной связью и без обрат­ной связи). Посредством электрических вы­ходных сигналов он осуществляет управление исполнительными механизмами. Кроме того, блок управления двигателем действует в ка­честве интерфейса с другими системами и с системой диагностики автомобиля.

Исполнительные механизмы (такие как электромагнитный клапан системы впрыска топлива) преобразуют электрические сиг­налы в механические параметры.

Обработка данных

Основная функция электронной системы управ­ления дизельным двигателем (EDC) — регули­рование количества впрыскиваемого топлива, момента начала впрыска и продолжительности впрыска. Система впрыска топлива с общей топливной магистралью также регулирует дав­ление топлива. Кроме того, блок управления дви­гателем осуществляет управление большим ко­личеством других исполнительных механизмов.

Для эффективной работы всех компонентов функции системы EDC на дизельном двигателе должны быть точно со­гласованы с каждым автомобилем и каждым двигателем. Это единственный способ оптими­зировать взаимодействие компонентов (см. рис. «Основные последовательности функционирования элементов электронной системы управления дизельным двигателем» ). Блок управления двигателем обрабатывает сигналы датчиков и ограничивает их до допусти­мого уровня напряжения. Некоторые входные сигналы также проверяются на предмет досто­верности. Используя эти входные данные и хра­нящиеся в памяти программы, микропроцессор вычисляет момент и продолжительность впры­ска топлива. Затем эта информация преобразуется в сигналы, согласованные с положениями поршней цилиндров двигателя. Эта программа вычислений имеет название «программное обеспечение блока управления».

Необходимая большая точность вместе с вы­сокими динамическими качествами двигателя требуют высокой вычислительной мощности. Выходные сигналы подаются на выходные каскады, обеспечивающие достаточную элек­трическую мощность для приведения в дей­ствие исполнительных механизмов (например, клапанов высокого давления системы впрыска топлива, клапана системы рециркуляции от­работавших газов или регулятора давления наддува). Кроме того, система осуществляет управление рядом вспомогательных компо­нентов (например, реле свечей накаливания и системой кондиционирования воздуха).

Отклонения характеристик сигналов опреде­ляются системой диагностики электромагнит­ных клапанов. Кроме того, блок управления осуществляет обмен сигналами и другими си­стемами автомобиля через соответствующие интерфейсы. Блок управления двигателем производит мониторинг всей системы впрыска топлива, являющийся частью общей стратегии обеспечения безопасности.

Ссылка на основную публикацию
Adblock
detector