Газотурбинные двигатели температура газа

РАБОЧАЯ ЛОПАТКА ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

Рабочая лопатка газотурбинного двигателя имеет полый профиль с выпуклой и вогнутой тонкими стенками, между которыми расположен силовой стержень, интенсификаторы охлаждения, на которые подается охлаждающая среда, и хвостовик. Силовой стержень соединен с хвостовиком. Профиль выполнен разделенным на две части, из которых прикорневая часть выполнена за одно целое с хвостовиком, а периферийная часть за одно целое с силовым стержнем. Расположенные между внутренними стенками профиля и силовым стержнем интенсификаторы охлаждения выполнены в виде вихревой матрицы. В периферийной части профиля ребра вихревой матрицы соприкасаются, а в прикорневой части профиля — расположены на расстоянии друг от друга. Изобретение направлено на повышение экономичности газотурбинного двигателя и повышение эффективности охлаждения рабочих лопаток турбины. 2 н. и 1 з.п. ф-лы, 3 ил.

1. Рабочая лопатка газотурбинного двигателя, имеющая полый профиль с выпуклой и вогнутой тонкими стенками, между которыми расположен силовой стержень, интенсификаторы охлаждения, на которые подается охлаждающая среда, и хвостовик, причем силовой стержень соединен с хвостовиком, а профиль выполнен разделенным на две части, из которых прикорневая часть выполнена за одно целое с хвостовиком, а периферийная часть за одно целое с силовым стержнем, отличающаяся тем, что расположенные между внутренними стенками профиля и силовым стержнем интенсификаторы охлаждения, выполнены в виде вихревой матрицы, причем в периферийной части профиля ребра вихревой матрицы соприкасаются, а в прикорневой части профиля — расположены на расстоянии друг от друга. 2. Рабочая лопатка турбины по п. 1, отличающаяся тем, что профиль выполнен без поперечного разреза между прикорневой частью и периферийной частью профиля. 3. Газотурбинный двигатель с высокотемпературной охлаждаемой газовой турбиной, отличающийся тем, что газовая турбина двигателя содержит рабочие лопатки по п 1.

Изобретение относится к области газотурбинных двигателей и может быть использовано в авиационных газотурбинных двигателях, а также в энергетических газотурбинных установках.

История создания и развития экономичных газотурбинных двигателей и газотурбинных энергетических установок связана с поисками решений, позволяющих повысить эффективность термодинамического цикла. Эффективность термодинамического цикла зависит в первую очередь от параметров термодинамического цикла и, в частности, от температуры газа перед турбиной. Чем выше температура газа перед турбиной, тем выше эффективность термодинамического цикла. При этом возможность достижения высокой температуры газа перед турбиной ограничена особенностями конструкции турбины двигателя, критичным элементом которой являются рабочие лопатки турбины.

Рабочие лопатки турбины испытывают высокие нагрузки в поле центробежных сил и являются одними из наиболее нагруженных элементов газотурбинных двигателей. Кроме того, рабочие лопатки турбины газотурбинного двигателя находятся под воздействием потока горячих газов. Сочетание этих факторов приводит к необходимости совершенствования конструкции турбин и их рабочих лопаток при создании новых модификаций газотурбинных двигателей.

Известна рабочая лопатка турбомашины (RU 2118462) содержащая замок, перо, внутреннюю полку, периферийную полку, соединенные с ними короткие супер оболочки с локальным закреплением или опиранием на полку каждой короткой супер оболочки только в зоне ее периферийного сечения. Как вариант супер оболочка по толщине выполнена составной в виде пакета вставленных одна в другую преимущественно металлических мини оболочек с локальным закреплением или опиранием на полку по периметру пера каждой мини оболочки только в зоне ее периферийного сечения. Как вариант супер оболочка содержит скользящие боковые опоры в виде дискретных выступов на ее внутренней поверхности. Как вариант, по меньшей мере, одна мини оболочка и перо имеют на своих поверхностях защитные покрытия.

Известна взятая за прототип охлаждаемая рабочая лопатка турбины, состоящая из хвостовика, рабочей профильной части, имеющей полый профиль с выпуклой и вогнутой тонкими стенками, между которыми расположен силовой стержень, выполненный за одно целое с хвостовиком и интенсификаторы охлаждения отличающаяся тем, что рабочая профильная часть выполнена разделенной на две части, из которых прикорневая часть выполнена за одно целое с хвостовиком, а периферийная часть за одно целое с силовым стержнем (RU 2656052).

Недостатком указанных лопаток является уязвимость к воздействию центробежных сил и высоких температур, что не позволяет повышать температуру газа перед турбиной.

Предлагаемое решение направлено на устранение указанных недостатков, а именно на обеспечение возможности повышения экономичности газотурбинного двигателя за счет повышения температуры газа перед турбиной, которое обеспечивается конструкцией рабочих лопаток обеспечивающей рациональное перераспределение напряжений в рабочих лопатках турбины и одновременным применением эффективной системы охлаждения рабочих лопаток турбины.

Применение во внутренней полости профильной части охлаждаемой рабочей лопатки турбины относительно холодного силового стержня, выполненного заодно целое с хвостовиком лопатки и особой конструкции выполненных в виде вихревой матрицы интенсификаторов охлаждения между внутренними стенками профиля и силовым стержнем, позволяет перераспределить нагрузки от элементов рабочей лопатки в поле центробежных сил и усилить охлаждение лопатки, что способствует повышению несущей способности рабочей лопатки турбины.

Согласно предлагаемому изобретению во внутренней полости профильной части охлаждаемой рабочей лопатки турбины расположен относительно холодный силовой стержень, выполненный заодно целое с хвостовиком лопатки, а профильная часть рабочей лопатки разделена на периферийную и прикорневую зоны. При этом в периферийной зоне внутренней полости профильной части рабочей лопатки турбины выполнена механическая связь профиля с силовым стержнем (например, элементы интенсификаторов охлаждения, расположенные на внутренней стенке профиля и на силовом стержне, соединяют профильную часть с силовым стержнем и ребра вихревой матрицы, расположенные на внутренней стенке профиля и на силовом стержне, соприкасаются (пересекаются, превращаясь в единое целое), а в прикорневой зоне внутренней полости профильной части рабочей лопатки турбины механическая связь профиля с силовым стержнем отсутствует и ребра вихревой матрицы не соприкасаются (перекрещиваются, допуская взаимное смещение).

Такая конструкция рабочей лопатки турбины позволяет разгрузить силовой стержень от нагрузки в поле центробежных сил, поскольку только периферийная часть профильной части рабочей лопатки соединена с силовым стержнем (нагрузка только от нее может передаваться силовому стержню, поскольку ребра вихревой матрицы в этой зоне пересекаются, и через них передается нагрузка от периферийной части профиля). При этом корневое сечение профильной части рабочей лопатки также разгружается, поскольку прикорневая часть профиля рабочей лопатки соединена непосредственно с хвостовиком рабочей лопатки турбины, а нагрузку от периферийной части несет силовой стержень. При этом силовой стержень соединен или выполнен заодно целое с замком лопатки или с диском турбины, который, в конечном итоге, воспринимает усилия от рабочих лопаток турбины. Предлагаемое конструктивное решение позволяет при прочих равных условиях понизить общий уровень напряженно-деформированного состояния рабочей лопатки турбины.

Предлагаемое решение поясняется следующими рисунками:

Фиг. 1 — двигатель;

Фиг. 3 — рабочая лопатка турбины;

2 — рабочая лопатка;

3 — прикорневая часть профиля;

4 — периферийная часть профиля;

5 — ребра вихревой матрицы;

6 — хвостовик рабочей лопатки;

7 — силовой стержень.

В процессе работы газотурбинного двигателя параметры рабочего тела (температура и давление) при перемещении по проточной части меняются в соответствии с особенностями термодинамического цикла, который реализуется в этом двигателе. При этом рабочее тело сжимается, нагревается, а затем расширяется, совершая полезную работу. Эффективность двигателя, в первую очередь, зависит от эффективности термодинамического цикла, а возможность повышения эффективности термодинамического цикла зависит, в частности, от возможности повышения температуры газа перед турбиной.

Читать еще:  Что сделать для двигателя в мороз

Турбина 1 находится в условиях постоянного воздействия газа, имеющего высокую температуру. Одним из основных элементов, определяющих надежность и эффективность турбины и двигателя в целом, является рабочая лопатка 2 турбины. Таким образом, способность рабочей лопатки турбины работать в этих условиях определяет экономичность газотурбинного двигателя.

При обтекании профиля рабочей лопатки турбины создается аэродинамическая сила, которая в свою очередь создает крутящий момент на валу турбины. При этом тепловой поток от рабочего тела разогревает элементы конструкции лопатки. Одновременно на конструктивные элементы лопатки действуют центробежные силы. С учетом изложенного возникает необходимость обеспечения работоспособности лопатки в условиях высокого уровня напряжений от центробежных сил и при высокой температуре.

Полная нагрузка от центробежных сил, действующих на прикорневую часть 3 профиля рабочей лопатки 2, воспринимается непосредственно хвостовиком 6, поскольку ребра 5 вихревой матрицы в этой зоне перекрещиваются (не соприкасаются) и через них нагрузка не передается силовому стержню 7. При этом напряженное состояние в этой части профиля существенно снижается за счет укорочения по сравнению с полной высотой профильной части лопатки. Полная нагрузка от центробежных сил, действующих на периферийную часть 4 профиля рабочей лопатки 2, воспринимается силовым стержнем 7, поскольку ребра 5 вихревой матрицы в этой зоне пересекаются (соприкасаются) и через них нагрузка передается силовому стержню 7. При этом напряженное состояние каждой из двух частей рабочей профильной части (прикорневой части 3 профиля и периферийной части 4 профиля) существенно снижается за счет уменьшения высоты каждой из них по сравнению с полной высотой рабочей профильной части лопатки.

Уровень допустимых напряжений в материале зависит от температуры материала в конкретном месте. Причем, чем выше температура материала, тем ниже уровень допустимых напряжений в материале. И наоборот: чем ниже уровень напряжений в материале, тем выше уровень температуры материала, который можно допустить для работы при таких напряжениях в материале. С учетом предложенного решения появляется возможность поднять температуру газа перед турбиной. С повышением температуры газа перед турбиной повышается эффективность термодинамического цикла и экономичность газотурбинного двигателя в целом.

Таким образом, за счет снижения напряженного состояния каждой из двух частей разделенной рабочей профильной части лопатки турбины достигается возможность повышения температуры газа перед турбиной и повышения за счет этого эффективности термодинамического цикла и экономичности двигателя.

Газотурбинные двигатели температура газа

УДК 551.50 ББК 39.15

В статье рассмотрены вопросы циркуляции сред Земли в поле её вращения относительно Полярной оси NS. В основу исследования циркуляции сред Земли положен закон Био-Савара в его простейшей форме на базе бесконечно длинного вихря, нашедший широкое применение в аэродинамике профилей крыла, в газовой динамике и в гидродинамике. В процессе применения закона Био-Савара к материальным средам Земли, находящимся в поле её суточного вращения, установлена закономерность взаимосвязи циркуляции скорости Г исследуемой элементарной частицы с относительной высотой (глубиной) ±Н её расположения по отношению к осреднённой поверхности Земли и с географической широтой. Сущность этой закономерности представлена математическим выражением в физических параметрах нашей планеты. Полученная интенсивность циркуляции скорости Г сред Земли переведена в безразмерные критериальные параметры. На их основе предложены вихревые характеристики сред Земли. Дана их классификация. Разработан пакет следствий вихревых характеристик, по сущности которых предложен рабочий процесс мало известных в природе вихревых явлений геофизики с точки зрения вихревой динамики свободно взвешенных сред планеты типа «Земля». Предложены следствия вихревых характеристик сред Земли и особенности рабочего процесса геофизических явлений на Солнце.

Ключевые слова: суточное вращение, циркуляция сред Земли, вихревые характеристики, следствия вихревых характеристик сред Земли.

  • № 4, 2020
  • Летательные аппараты, авиационные двигатели и методы их эксплуатации

Обоснование требований, предъявляемых к вновь создаваемым камерам сгорания с поперечной системой вихреобразования авиационных двигателей

УДК 621.45.022 ББК 39.55

Проектирование и производство авиационных газотурбинных двигателей (ГТД) и их компонентов – это крайне масштабный, комплексный процесс. По мере развития отдельных отраслей науки, внедрения технических новшеств и получения от их использования обратной связи происходит планомерное усложнение конструкторско-производственной цепочки. Это усложнение, с одной стороны, обеспечивает возможность совершенствования изделия за счёт воплощения в его конструкции новых идей и подходов, с другой – повышает наукоёмкость данной отрасли и увеличивает стоимость конечного изделия. Необходимость в совершенствовании изделия, в свою очередь, диктуется системой обеспечения и поддержания лётной годности воздушных судов (ВС), стандарты которой также совершенствуются с течением времени.

Ключевые слова: камера сгорания, авиационный газотурбинный двигатель, эксплуатационные требования, метод обоснования требований, лётная годность воздушных судов.

  • № 3, 2020
  • Летательные аппараты, авиационные двигатели и методы их эксплуатации

Факторный анализ процессов в камере сгорания авиационного двигателя как основа для обоснования номенклатуры эксплуатационных требований

УДК 621.45.022 ББК 39.55

Требования, предъявляемые к авиационному двигателю в целом, в значительной степени определяются процессами, протекающими в камере сгорания (КС). Поскольку обоснование номенклатуры эксплуатационных требований базируется на закономерностях влияния целого комплекса параметров, необходимо провести факторный анализ процессов, протекающих в исследуемой КС, с целью выявления данных закономерностей как в условиях отсутствия теплового воздействия на кинетику потока, так и при наличии данного воздействия при сжигании топлива. Для этого необходимо выстроить целостную систему формирования внешнего облика объекта исследования, что, в свою очередь, подразумевает его фрагментацию на отдельные локации и детальную проработку структурной схемы КС по частям. Затем результаты от отдельных частей согласуют и объединяют в единую систему уже для целостной конфигурации объекта исследования, которая подвергается факторному анализу в ходе расчётов. Факторный анализ как промежуточных, так и конечных результатов оптимизации по выделенным критериям позволяет обосновать перечень эксплуатационных требований, учёт которых обеспечит заданный уровень моделируемых процессов. В данной статье выполнен факторный анализ процессов, протекающих во входной части камеры сгорания с поперечной системой вихреобразования (КСПСВ).

Ключевые слова: камера сгорания, авиационный газотурбинный двигатель, эксплуатационные требования, обоснование требований, факторный анализ.

  • № 3, 2020
  • Летательные аппараты, авиационные двигатели и методы их эксплуатации

Циркуляционно-вихревой способ активации подсасывающей силы крыла у подстилающей поверхности

УДК 629.735.33.015 ББК 39.15

В статье рассмотрен вопрос возможной вихревой активации рабочего процесса подсасывающей силы крыла вблизи подстилающей поверхности. Полезный эффект реализации такого рабочего процесса может проявиться в уменьшении длины разбега и пробега воздушного судна при взлёте и посадке в поле вихревой интерференции крыла с подстилающей поверхностью аэродрома. Областью практического применения могут стать несущие поверхности судов на подводных крыльях и экранопланов и им подобных судов на малых высотах полёта. Сущность вихревой активации подсасывающей силы крыла построена на базе теоремы проф. Н. Е. Жуковского о подъёмной силе крыла и на зеркальном эффекте подстилающей поверхности, предложенном Прандтлем. В статье установлена физическая и кинематическая сущность интерференции линейного вихря с плоской подстилающей поверхностью. Эффект подобной вихревой интерференции представлен на сравнении автоперемещения вихревых дымовых колец различного диаметра при одинаковом импульсе силы, их генерирующей. Установлен факт силового взаимодействия вихревого кольца с твёрдой плоской стенкой, на базе которого построен способ вихревой активации подсасывающей силы, способной уменьшать лобовое сопротивление крыла. В качестве объекта теоретического исследования выбран линейный бесконечно длинный вихрь интенсивности Г = 2p, позволяющий упростить математическое выражение закона Био – Савара до функции скорости вихря св = f (1/(2h)). Представлена кинематическая вихревая характеристика вихря в виде зависимости скорости перемещения от высоты его расположения над экраном. Указаны основные следствия интерференции вихря с экраном и области их применения.

Читать еще:  Газель двигатель штайер технические характеристики

Ключевые слова: подсасывающая сила, циркуляция скорости Г, интерференция вихря, плоский экран, перемещение вихря, вихревая характеристика.

  • № 1, 2020
  • Летательные аппараты, авиационные двигатели и методы их эксплуатации

Технология изготовления элементов камеры сгорания с поперечной системой образования зон обратных токов

УДК 621.45.022 ББК 39.55

С каждым годом эксплуатационные требования, предъявляемые к авиационным силовым установкам, становятся всё жёстче. Камера сгорания, являясь одним из основных элементов двигателя летательного аппарата, определяет показатели его эффективности, экологичности и надёжности. Улучшение данных показателей возможно за счет учета эксплуатационных требований на этапе проектирования камеры сгорания.

Поскольку концепция камеры сгорания с поперечной системой образования зон обратных токов предполагает наличие множества тонкостенных элементов, а также поверхностей двойной кривизны, то процесс изготовления камеры такой конструкции представляет собой комплексную инженерную задачу.

В статье описана технология изготовления камеры сгорания предлагаемой конструкции на примере экспериментальной модели для камерного стенда.

Ключевые слова: камера сгорания, авиационный газотурбинный двигатель, эксплуатационные характеристики, технология изготовления, процесс горения.

  • № 4, 2019
  • Летательные аппараты, авиационные двигатели и методы их эксплуатации

Особенности интерференции вихрей воздухозаборников газотурбинных силовых установок с подстилающей поверхностью

УДК 629.7.036.3 ББК 39.15

В статье обозначены основные проблемы познания явления вихреобразования и его естественных и техногенных вихрей. Дано новое определение вихреобразования, построенное на физической сущности рабочего процесса. Представлено математическое обоснование рабочего процесса вихреобразования с использованием теоремы профессора Н. Е. Жуковского о подъемной силе крыла, а также уравнения сохранения энергии движения газа и теоремы Стокса о равенстве напряжения вихря и циркуляции скорости. На основании анализа уравнения сохранения энергии выявлены основные факторы генерации и аккумуляции естественных и техногенных вихрей. Исследован вопрос определяющей роли подстилающей поверхности на процесс формирования вихрей стокового типа воздухозаборников газотурбинных силовых установок воздушных судов. Отмечено влияние других внешних факторов на сущность образования техногенных вихрей. Дана классификация техногенного ВО и его вихрей по сущности рабочего процесса.

Ключевые слова: вихреобразование, техногенные вихри, интерференция вихрей, роль подстилающей поверхности, газотурбинные силовые установки, математическое обоснование вихрей силы Кориолиса, воздухозаборник.

  • № 4, 2019
  • Летательные аппараты, авиационные двигатели и методы их эксплуатации

Повышение робастности нейросетевой модели мониторинга ГТД на основе редукции

УДК 621.438, 004.855 ББК З363.3, 32.813, 22.18

В статье представлен способ повышения робастности нейросетевой модели мониторинга газотурбинного двигателя при стендовых испытаниях за счет уменьшения количества малозначащих связей нейронной сети (нейросетевой редукции). Способ основан на преобразовании задачи обучения нейросети к задаче многокритериальной оптимизации, включающей в себя критерий минимизации ошибки и критерий минимизации абсолютных значений весовых связей нейросети. Последнее требование приводит к выделению малозначащих связей, которые могут быть удалены без потери точности. В результате, способность модели к обобщению значительно возрастает, увеличивается робастность, уменьшается ошибка расчета мониторируемых параметров.

Ключевые слова: робастность модели, нейронные сети, стендовые испытания, мониторинг ГТД, редукция нейронной сети.

  • № 3, 2019
  • Летательные аппараты, авиационные двигатели и методы их эксплуатации

Совершенствование методики оценки остаточного ресурса ТРДД

УДК 629.5.03-843.8 ББК 74.5

В статье сформулированы общие подходы к формированию методики оценки остаточного ресурса длительно эксплуатируемых ТРДД на самолетах Гражданской Авиации с учетом реальных условий эксплуатации. На примере авиационного двигателя Д-436-148 со штатной программой управления выполнен анализ влияния величины радиальных зазоров в газовой турбине на темп исчерпания ресурса модуля ТРДД – газовой турбины. В качестве параметра, определяющего темп исчерпания ресурса газовой турбины, предлагается использовать долю повреждаемости рабочей лопатки на взлетном режиме.

Ключевые слова: ресурс газотурбинного двигателя, радиальные зазоры в газовой турбине, долговечность рабочих лопаток, ползучесть.

  • № 2, 2019
  • Летательные аппараты, авиационные двигатели и методы их эксплуатации

Влияние вибраций ротора ГТД на техническое состояние межвального подшипника

УДК 004. 588 ББК 74.5

Значительное число досрочных съемов авиадвигателей с эксплуатации связано с отказами межвальных подшипников. Возможными причинами таких отказов являются нарушения условий их смазки и охлаждения. В статье приведены результаты экспериментальных исследований по оценке влияния снижения производительности маслопровода при изгибных колебаниях ротора на тепловое состояние межвального подшипника.

При работе ТРДД, вследствие неуравновешенности ротора, его вал совершает изгибные колебания. В этом случае, маслопровод, размещенный внутри вала двигателя, также будет совершать изгибные колебания, что может стать одной из причин снижения расхода масла через маслопровод при значительном уровне вибраций. При этом рабочая температура межвального подшипника может существенно возрасти.

Ключевые слова: авиационный двигатель, межвальный подшипник, виброскорость, температура подшипника, параметры масляной системы ГТД.

  • № 4, 2018
  • Летательные аппараты, авиационные двигатели и методы их эксплуатации

Сравнительный анализ математической модели датчика температуры газа за турбиной турбокомпрессора вертолетного ГТД на основе регрессионного анализа и нейронных сетей

УДК 629.7:681.324 ББК 39.551-01-07 С21

В статье представлены результаты сравнительного анализа математических моделей датчика температуры газа за турбиной турбокомпрессора газотурбинного двигателя вертолета на основе регрессионного анализа и на основе многослойной нейронной сети. Доказана нецелесообразность использования многослойной нейронной сети в качестве математической модели датчика температуры газа. Выбран оптимальный тип математической модели датчика температуры газа по критерию минимума ошибки вычисления выходного параметра.

Ключевые слова: газотурбинный двигатель, несущий винт, математическая модель датчика температуры газа, вертолет, нейронная сеть.

«Барс» станет снежным

К сожалению, организаторы соревнований танкисток фактически засекретили. Им запретили общаться с журналистами и даже с коллегами по биатлону — танкистами других команд. Если о необычных танковых экипажах подробно рассказать пока не получается, то о тех машинах, которыми управляли женщины, рассказать стоит. Тем более что танки с газотурбинными двигателями известны гораздо меньше, чем с дизельными.

Зачем вообще возникла необходимость ставить авиационный двигатель, приспособленный для чистого воздуха, на машину, которая работает в пыли и грязи? Тем более у нас были дизельные моторы для танков — одни из лучших в мире.

По одной из версий, в конце 1960-х руководством Минобороны СССР была поставлена задача создать танк прорыва. Одно из условий — многотопливность. Идеально для этого подходил газотурбинный двигатель. Он мог работать на всем, что горит. Танки, получившие название Т-80, были разработаны в КБ Кировского завода под руководством конструктора Николая Сергеевича Попова. Там же и выпускались. Позже к производству этих машин подключили завод «Трансмаш» в Омске.

На вооружение Советской армии Т-80, оснащенные газотурбинным двигателем ГТД-1000Т, поступили в 1976 году. Их максимально засекретили и сразу стали отправлять в танковые части советских войск, расквартированные в Восточной Европе. В случае начала большой войны армады этих машин должны были рвануть на запад по европейским автобанам. Танк легко развивал на шоссе скорость 80 км/час. А запасы топлива мог пополнять на любой АЗС, которых в Европе, как известно, много. Причем заливать в баки можно было все — и дизтопливо, и бензин, и керосин.

Эксперты НАТО не сомневались, что Т-80 дойдут до Ла-Манша за два-три дня, остановить их мог только ядерный удар.

После развала Варшавского Договора тысячи газотурбинных танков отправили на базы хранения куда-то за Урал. В Российской армии осталась одна дивизия — Кантемировская и несколько полков, имевших на своем вооружении Т-80. В эпоху безденежья 1990-х годов выпуск этих машин прекратили и всерьез задумались о снятии их с вооружения вообще, с последующей переплавкой. Действительно, Т-80 гораздо дороже в производстве и эксплуатации, чем дизельный Т-72. Ну и зачем нашей армии танки с принципиально разными двигателями? Проще и дешевле оставить один тип — дизельный.

Читать еще:  Щелчок при запуске двигателя гранта

По какому-то высшему провидению окончательное решение не приняли. И когда наша страна озаботилась защитой арктических территорий, выяснилось, что газотурбинный танк подходит для этих целей, как никакой другой. И хотя его боевые характеристики действительно схожи с дизельным аналогом, Т-80 — танк иного уровня, чем Т-72 или Т-90.

Например, «восьмидесятка» может идти по глубокому снежному насту, не проваливаясь. В отличие от дизелей газовая турбина позволяет трогаться с места очень плавно, без рывков и столь же плавно идти дальше. Наст уплотняется, но не рвется, и танк не зарывается в сугробы. Немаловажно и то, что газовая турбина, в отличие от дизеля, легко запускается при самом сильном морозе.

На прошлогоднем форуме «АРМИЯ-2018» было объявлено о начале масштабной и глубокой модернизации Т-80У. Стало ясно, что эти танки остаются в строю.

В открытой печати говорилось о том, какие качества приобретут обновленные машины.

Система управления огнем — и так одна из лучших в мире, станет еще более совершенной. Она будет включать лазерный дальномер, датчики ветра, скорости движения танка и цели, крена, температуры заряда и окружающей среды, танковый баллистический вычислитель. В совокупности с уникальной ходовой частью и высокой плавностью хода новая система управления позволит вести эффективный огонь на пересеченной местности при скорости до 35 км/час и любом положении башни. На такой скорости в движении прицельно стрелять не может ни один танк в мире.

На танке устанавливается оригинальная система кондиционирования и обогрева. Она обеспечивает индивидуальную подводку прохладного или теплого воздуха каждому члену экипажа.

Модернизированный Т-80 будет оснащен многотопливным газотурбинным двигателем мощностью 1250 л.с. Проработан двигатель мощностью 1400 л.с. Отечественный газотурбинный танковый двигатель — вообще наша национальная гордость. Аналогичный двигатель танка «Абрамс» даже близко с ним ставить нельзя. Наш прекрасно работает не только в условиях северов, но и в пустынях. Он оборудован оригинальнейшим устройством, которое через определенные промежутки времени встряхивает работающий мотор, и вся налипающая на лопатках турбин грязь, песок и пыль отрываются и улетают в выхлоп.

Для Т-80 давно создана гидрообъемная передача. И если ее удастся внедрить в процессе модернизации, то количество органов управления сведется к минимуму — штурвал, педаль газа и педаль тормоза.

Уникальная особенность Т-80 — способность прыгать с места на 7 метров. И были случаи, когда в ходе еще первой чеченской войны Т-80, управляемые хорошо подготовленными экипажами, в таком прыжке уходили от уже выпущенной из РПГ-7 ракеты.

На одной из первых выставок IDEX, проходящих в Абу-Даби, Т-80У прыгнул с трамплина на дальность 14 метров. Это стало так и не превзойденным мировым рекордом. Т-80У получил имя «летающего» и долгие годы был неофициальным символом выставок IDEX. Американский «Абрамс» попытался повторить прыжок, но плюхнулся сразу за трамплином, да так, что у него лопнули трубопроводы, на песок потекло масло — танк еле уполз с показательной арены.

По совокупности боевых и эксплуатационных характеристик обновленная «восьмидесятка» может стать лучшим танком в мире. И надежным стражем наших северных земель. От своих дизельных собратьев он будет отличаться так же, как реактивный самолет от поршневых.

Кстати, эту особенность танкисты, получившие первые Т-80, почему-то не учли.

Для газотурбинных машин экипажи изначально надо было готовить абсолютно по-новому, а их учили по методичкам для дизельных танков. Возникало много проблем, в том числе по непомерному расходу топлива. Танкисты привыкли — если дизель запустишь, больше его не выключай, а то в критический момент не заведешь. Газовая турбина запускается сразу и в любой мороз. Но их первоначально гоняли как и дизели, поэтому тонны керосина буквально вылетали в трубу. Осознание пришло позже.

Сейчас при хорошо подготовленном экипаже Т-80У потребляет топлива не намного больше, чем Т-72, а динамические качества танков — не сопоставимы.

В Омске на заводе Транспортного машиностроения, где когда-то производили Т-80У, а сейчас занимаются их модернизацией, еще в конце 1990-х в инициативном порядке сделали два опытных танка, назвав их «Барс» и «Черный орел». Танку, предназначенному для службы в северных снегах, очень бы подошло позабытое сейчас имя «Барс».

Стехиометрические газотурбинные двигатели

Создание стехиометрических газотурбинных двигателей связано с решением проблемы высоких температур газа перед лопатками турбины. Сегодня эти температуры составляют порядка 2 000 К, что ниже энергетических возможностей топлива. Приблизить температуры газа в газотурбинных двигателях к энергетическим возможностям топлива — это стратегическая задача, которая появилась сразу же с созданием газотурбинного двигателя, и оставалась таковой в течение более 80 лет. Предложены оригинальные способы охлаждения турбины, которые в сочетании с существующими технологиями изготовления лопаток турбин позволяют решить эту задачу. На основе разработанных автором оригинальных технических решений сформирована концепция построения сверх- и гиперзвуковых газотурбинных двигателей — одноконтурные одновальные турбореактивные двигатели с высокотемпературной (более 2 300 К) одноступенчатой регулируемой турбиной. Предложены варианты реализации концепции, обозначены проблемные вопросы. Появление стехиометрических газотурбинных двигателей — это ожидаемое событие, которое в концептуальном плане произошло. По характеристикам они существенно превосходят все известные турбореактивные двигатели, включая F-135, и, по-видимому, в перспективе заменят двухконтурные турбореактивные двигатели, в том числе и с форсажной камерой.

Литература

[1] Скибин В.А., Солонин В.И., ред. Работы ведущих авиадвигателестроительных компаний по созданию перспективных авиационных двигателей (аналитический обзор). Москва, Изд-во ЦИАМ, 2004. 424 с.

[2] Сосунов В.А., Чепкин В.М., ред. Теория, расчет и проектирование авиационных двигателей и энергетических установок. Москва, Изд-во МАИ, 2003. 688 с.

[3] Письменный В.Л. Теплообменник. Пат. РФ 2607916. 2017, бюл. № 2, 8 с.

[4] Письменный В.Л. Воздухо-воздушный радиатор и способ повышения его эффективности. Пат. РФ 2632561. 2017, бюл. № 28, 6 с.

[5] Письменный В.Л. Способ охлаждения турбинных лопаток газотурбинного двигателя. Пат. РФ № 2409745. 2011, бюл. № 2, 5 с.

[6] Письменный В.Л. Авиационная силовая установка и способ ее регулирования. Пат. РФ 2616089. 2017, бюл. № 11, 13 с.

[7] Письменный В.Л. Авиационная стехиометрическая силовая установка и способ ее регулирования. Пат. РФ 2612482. 2017, бюл. № 7, 12 с.

[8] Письменный В.Л. Способ форсирования турбореактивного двигателя. Пат. РФ 2616137. 2017, бюл. № 11, 10 с.

[9] Письменный В.Л. Камера сгорания авиационного газотурбинного двигателя. Пат. РФ 2612449. 2017, бюл. № 7, 5 с.

[10] Фомин В.Н., Егоров И.Н. Упрощенная методика расчета характеристик осевых многоступенчатых нерегулируемых компрессоров. Процессы и характеристики авиационных двигателей. Сб. Научно-методических материалов, Москва, Изд-во ВВИА им. Н.Е. Жуковского, 1987, с. 121–127.

[11] Письменный В.Л. Прямоточный воздушно-реактивный двигатель. Пат. РФ 2647919, 2018, бюл. № 9, 5 с.

Ссылка на основную публикацию
Adblock
detector