Где показаны обороты двигателя

Вариатор скутера

  • Информация
  • Характеристики

Принцип работы вариатора скутера.

Вариатор – это механическая бесступенчатая передача.

Он используется для плавного изменения частоты вращения ведомого вала.

В основном на всех типах мотороллеров установлен клиноременный вариатор. Он состоит из ведущего шкива, ведомого и клиновидного ремня и работает только в зависимости от количества оборотов двигателя, не реагируя на нагрузки (например при подъеме в гору, нагрузка на заднее колесо увеличивается, а передаточное число остается неизменным), что является одним из его недостатков.

Вариатор – это механическая бесступенчатая передача.

Он используется для плавного изменения частоты вращения ведомого вала.

В основном на всех типах мотороллеров установлен клиноременный вариатор. Он состоит из ведущего шкива, ведомого и клиновидного ремня и работает только в зависимости от количества оборотов двигателя, не реагируя на нагрузки (например при подъеме в гору, нагрузка на заднее колесо увеличивается, а передаточное число остается неизменным), что является одним из его недостатков.

Начнем с самого простого. Почему клиновидный ремень? Из рисунка видно, что ремень в разрезе имеет трапециевидную форму и «вклинивается» в шкив только своими боковыми поверхностями. При износе этих поверхностей, благодаря своей форме, он врезается глубже в шкив и все равно остается в хорошей сцепке с ним.

Как изменяется передаточное число? Устройство ведущего шкива (ведущий шкив вращается коленвалом) таково, что его щеки при воздействии центробежных сил плавно сжимаются и выталкивают клиновидный ремень все дальше и дальше от центра шкива. Ведомый же шкив при этом наоборот, разжимается, и ремень на нем плавно утопает все ближе и ближе к центру шкива. Чем больше обороты двигателя — тем больше сжимается ведущий шкив и разжимается ведомый, тем самым меняя передаточное число от коленвала к заднему колесу. Этот процесс хорошо виден на этих рисунках:

Двигатель не запущен:

Малые обороты двигателя:

Средние обороты двигателя:

Максимальные обороты двигателя:

На рисунках показаны также положения клиновидного ремня в разрезе на ведущем шкиве (слева) и ведомом (справа) при разных режимах работы двигателя.

Как устроен ведущий центробежный шкив вариатора? Довольно просто!
Разберемся в его конструкции, показанной на рисунке:

1 — неподвижная щека шкива, жестко прикрученная к цапфе (хвостику) коленчатого вала 5 болтом 8 с шайбой 6. Клиновидный ремень 2 размещен между щеками 1 и 3. Щека 3 устроена так, что свободно перемещается на валу 5. Перемещают ее ролики 4 которые упираются в упорную и неподвижную щеку 9. Под воздействием центробежной силы, ролики 4 расходятся от центра вала 5, тем самым сдвигая щеку 3 ближе к щеке 1 и выталкивая ремень 2 дальше от вала 5. Положения роликов 4 и щеки 3 на разных оборотах двигателя Вы уже видели на четырех рисунках выше.

Теперь немного о ведомом шкиве (рисунок ниже).

От ведущего шкива он отличается тем, что у него нет роликов, вместо них пружина (смотрите рисунок справа). В тот момент когда на ведущем шкиве щеки сближаются, выталкивая при этом ремень, на ведомом шкиве щеки (а именно двигается щека 5 по валу 7, щека 6 установлена жестко и неподвижна) наоборот, расходятся, сжимая пружину 3, и ремень опускается глубже, что опять таки видно на режимах работы двигателя выше на четырех рисунках. Благодаря пружине 3 клиновидный ремень всегда натянут, и натяжение его пропорционально увеличивается с увеличением оборотов. Это в свою очередь позволяет не проскальзывать ремню на более высоких оборотах, на которых нагрузка больше чем на более низких.

Существуют также более простые модели мотороллеров у которых отсутствует вариатор на ведущем валу. Вместо него установлен простой шкив и передаточное число от него к ведомому фиксированное на всех оборотах двигателя. Такие модели больше 50 км/ч. не развивают и «тупо» набирают обороты с места. Ведомый же шкив у них такой же как и у вариаторных — под пружиной и служит только для натяжения ремня. Единственный плюс такого устройства — ремень служит дольше.

Дальше вступает в работу автоматическое сцепление, которое находится в сборе с ведомым шкивом.

Подбор передач, плавность хода

В настоящей статье мы рассмотрим вопросы, связанные с переключением передач. Несмотря на то, что данный процесс для всех состоявшихся водителей стал привычным делом, не помешает более точно разобрать эту тему, что позволит вам, возможно, выявить дополнительные возможности управления своим автомобилем. Вся нижеизложенная информация станет непосредственным руководством к действию для владельцев автомобилей с механической коробкой передач, а для владельцев «автоматов» — информацией для более точного понимания происходящего.

Физика процесса

Для начала разберем, по какой причине мы вынуждены иметь дело с переключением передач. Все исходит от одного основного свойства двигателей внутреннего сгорания (ДВС), которые располагаются под капотами подавляющего большинства автомобилей. Это свойство заключается в том, что ДВС имеет определенный, достаточно узкий, диапазон работы.

Режим работы двигателя определяется по частоте вращения коленчатого вала – того самого вала, который и приводит во вращение колеса. Частоту вращения коленчатого вала показывает тахометр (водители, не имеющие в своих автомобилях этого замечательного прибора, ориентируются на слух).

Запустив двигатель, вы видите, что в спокойном состоянии (вы не нажимаете на педаль газа), коленвал все время вращается с некой минимальной частотой – холостой ход, как правило, менее 1000 об/мин. Это нижний порог – если каким-то способом заставить коленвал вращаться медленнее – двигатель не сможет работать, он заглохнет. Поэтому вы включаете нейтральную передачу (разрыв связи двигателя и колес) перед остановкой. Конечно, можно заглушить двигатель, но тогда он теряет работоспособность и потребуется время на его запуск.

С другой стороны существует и верхний порог частоты вращения – на тахометре показан красной зоной. Если заставить коленвал вращаться быстрее – двигатель поломается. На многих автомобилях стоят электронные ограничители, которые не позволяют перекрутить двигатель, на остальных автомобилях – это задача водительского внимания. Вот и получается то, что мы не можем соединить двигатель и колеса раз и навсегда – тогда мы не сможем остановиться без глушения двигателя и не сможем разогнаться до высокой скорости.

Читать еще:  Датчик температуры двигателя на снегоход для чего

Важность КПП

Для того чтобы устранить данную проблему, умные люди и придумали коробку переключения передач (КПП). Здесь, включая разные передачи, вы соединяете двигатель и колеса в разных пропорциях. Это позволяет двигателю все время работать в своем рабочем диапазоне, а на колесах каждый раз получать разные результаты.

Узкий диапазон работы характерен именно для ДВС, в отличие от электродвигателей. Последние могут быть без труда остановлены без потери работоспособности с одной стороны, и раскручены до высоких частот вращения – с другой. По этой причине в трамваях и троллейбусах отсутствуют коробки передач, там двигатель и колеса связаны постоянно.

Различия получаемых результатов на разных передачах сводятся к разным скоростям и усилиям на колесах. Садитесь за руль автомобиля, в котором имеется тахометр, и поэкспериментируйте. Используя разные передачи на одних и тех же оборотах двигателя, вы получаете различные скорости.

  1. Первая передача – самая тихоходная, по мере повышения передач, скорости растут. Вам будет полезно знать диапазоны скоростей, которые достижимы на различных передачах. Выезжайте на длинный, ровный и достаточно свободный участок дороги и определите минимально и максимально возможные скорости на разных передачах – от минимальной до максимальной частоты вращения коленвала, соответственно. Кроме того, на разных передачах вы получаете различные усилия на колесах.
  2. Включите вторую передачу и раскрутите двигатель до 2000 об/мин. Теперь нажмите на газ до упора и запомните то ускорение, с которым автомобиль начал разгоняться.
  3. После этого включите третью передачу, раскрутите двигатель до 2000 об/мин. и повторите эксперимент – ускорение автомобиля значительно меньше. Передача, которая передает большую скорость, передает меньшее усилие и наоборот – это закон передаточных чисел. Попросту обычный закон равновесия – большая скорость не может появиться из ниоткуда, вы в чем-то выигрываете, в чем-то проигрываете.

Поэтому на первой передаче вы получаете самые маленькие скорости, но самые большие усилия:

  • максимальное ускорение разгона;
  • возможность преодолеть максимальный подъем;
  • возможность буксировать максимальный груз.

По мере увеличения передач возможные скорости растут, но усилия падают – интенсивность разгона и прочее снижаются. Диапазоны скоростей на разных передачах накладываются друг на друга, т.е. на одной скорости можно включать разные передачи. Таким образом, переключение передач является не жестким шаблоном (переключение только в определенной последовательности и только на определенных скоростях), а достаточно творческим процессом подбора той пропорции связи двигателя и колес, которая вас устраивает в данный момент.

Вам также следует знать еще одно важнейшее свойство двигателя – его мощность зависит от развиваемой частоты вращения. С ростом оборотов мощность повышается до определенного предела, а потом снова падает. Наибольшая мощность, как правило, развивается примерно во второй трети рабочего диапазона двигателя. Вот почему, например, при трогании с места вы добавляете обороты – на холостом ходу двигатель столь слаб, что ему с трудом удается сдвинуть автомобиль с места. Также понятно, почему не имеет смысла раскручивать двигатель до предела – на максимальных оборотах рев сильный, а мощность уже ниже, чем на средних.

Выбирайте ваш стиль езды

Из всего вышеизложенного проистекает непосредственно ваш стиль вождения. При умеренном разгоне вам имеет смысл на каждой передаче раскручивать двигатель до средних оборотов и включать следующую – в результате двигатель все время будет поддерживаться в экономичном диапазоне работы. Вы получите тишину и экономию топлива.

При необходимости интенсивного разгона или разгона на подъем – вы раскручиваете двигатель до высоких оборотов. После включения следующей передачи обороты падают, но все равно остаются в зоне высокой мощности – вы поддерживаете двигатель в диапазоне максимальной мощности. Владельцы автомобилей с автоматическими КПП могут заметить, что при различной интенсивности разгона (определяется степенью нажатия на педаль газа), двигатель автоматически поддерживается на различных режимах работы.

Иногда имеет смысл включать более низкие передачи без снижения скорости. Например, вы двигаетесь на какой-нибудь высокой передаче с умеренными оборотами двигателя.

Возникла необходимость быстро ускориться для того, чтобы кого-то обогнать или встроиться в более быстрый поток машин. Если просто нажать на газ, максимально возможного ускорения не последует – на умеренных оборотах двигатель не выдает большой мощности, и к тому же высокая передача передает малое усилие на колеса. Включив более низкую передачу, вы решаете одновременно все проблемы – обороты двигателя и, соответственно, его мощность повысились, усилие передается больше. Теперь нажатие на газ принесет вам ощутимо большее ускорение.

По тем же причинам имеет смысл включать более низкую передачу перед преодолением подъема. Владельцы «автоматов» могут заметить, как при интенсивном нажатии на газ или при въезде на подъем, обороты двигателя быстро повышаются – автоматически включилась пониженная передача. Иногда даже целесообразным является включение передачи сразу на две ступеньки ниже.

На какой передаче ехать?

Чтобы определять, когда какие передачи можно включить, вам как раз и понадобится знание скоростных диапазонов на различных передачах. Ориентируясь по скорости, вы сможете определить не только какие передачи можно сейчас включить, а также какие имеет смысл включить. Например, вы определили, что вторая передача позволяет вам разгоняться до 70 км/ч. При скорости 60 км/ч. для преодоления крутого подъема имеет смысл включить вторую, а вот для интенсивного разгона, нет – 60 уже почти «потолок».

Читать еще:  Электротяговые характеристики тягового двигателя

При включениях пониженных передач может возникать рывковое замедление автомобиля. Очень важно уметь обходиться без подобных неприятностей, которые на скользкой дороге могут привести к заносу. Для того, чтобы точно понимать данный вопрос, разберем причину этого явления.

Давайте проведем эксперимент. К примеру, вы двигаетесь на 2 передаче со скоростью 40 км/ч. При этом тахометр показывает, что частота работы двигателя, например, 3000 об/мин. Теперь вы включаете 4 передачу. Понятное дело, что при той же скорости частота работы двигателя стала меньше – 1500 об/мин. Ваша задача снова включить 2 передачу. Для того, чтобы все было плавно, в момент включения 2 передачи при скорости 40 км/ч., двигателю требуется работать, как мы уже выяснили, с частотой 3000 об/мин., а он изначально работает медленнее – всего 1500 об/мин. В результате, при включении 2 передачи, вы насильно вынуждаете двигатель быстро раскрутиться до 3000 об/мин.

Вы, конечно же, его раскручиваете, но он со своей стороны сопротивляется и успевает частично погасить скорость автомобиля. Получается рывковое замедление автомобиля. Снова 40 км/ч., 4 передача. Для того чтобы этого избежать, вы как обычно передвигаете рычаг в положение 2, но перед тем, как отпустить педаль сцепления, вы газом добавляете те самые 3000 об/мин. и только тогда отпускаете сцепление. В результате, все происходит максимально плавно.

Сейчас, в результате эксперимента, мы вычислили, сколько оборотов необходимо добавлять, но в реальных условиях вы не знаете точно, сколько оборотов будет развивать двигатель на той или иной передаче. Этого и не нужно. Вам просто необходимо понимать то, что на более низкой передаче обороты двигателя будут выше, чем до этого.

Поэтому, при включении понижающих передач, перед отпусканием педали сцепления, вы газом добавляете обороты двигателя больше, чем они были до этого. Потренируйтесь двигаться с постоянной скоростью, например 40 км/ч., и включать различные передачи в разных последовательностях – 2-4-3-4-2-3. Добейтесь того, чтобы все происходило максимально плавно.

Теперь вы сможете более грамотно использовать потенциал своего автомобиля, подбирая передачи для получения желаемых результатов в любых условиях, и делать это мягко и четко.

Где показаны обороты двигателя

Широкое применение таймер 555 находит в устройствах регулирования, например, в ШИМ — регуляторах оборотов двигателей постоянного тока.

Все, кто когда – либо пользовался аккумуляторным шуруповертом, наверняка слышали писк, исходящий изнутри. Это свистят обмотки двигателя под воздействием импульсного напряжения, порождаемого системой ШИМ.

Другим способом регулировать обороты двигателя, подключенного к аккумулятору, просто неприлично, хотя вполне возможно. Например, просто последовательно с двигателем подключить мощный реостат, или использовать регулируемый линейный стабилизатор напряжения с большим радиатором.

Вариант ШИМ — регулятора на основе таймера 555 показан на рисунке 1.

Схема достаточно проста и базируется все на мультивибраторе, правда переделанном в генератор импульсов с регулируемой скважностью, которая зависит от соотношения скорости заряда и разряда конденсатора C1.

Заряд конденсатора происходит по цепи: +12V, R1, D1, левая часть резистора P1, C1, GND. А разряжается конденсатор по цепи: верхняя обкладка C1, правая часть резистора P1, диод D2, вывод 7 таймера, нижняя обкладка C1. Вращением движка резистора P1 можно изменять соотношение сопротивлений его левой и правой части, а следовательно время заряда и разряда конденсатора C1, и как следствие скважность импульсов.

Рисунок 1. Схема ШИМ — регулятора на таймере 555

Схема эта настолько популярна, что выпускается уже в виде набора, что и показано на последующих рисунках.

Рисунок 2. Принципиальная схема набора ШИМ — регулятора.

Здесь же показаны временные диаграммы, но, к сожалению, не показаны номиналы деталей. Их можно подсмотреть на рисунке 1, для чего он, собственно, здесь и показан. Вместо биполярного транзистора TR1 без переделки схемы можно применить мощный полевой, что позволит увеличить мощность нагрузки.

Кстати, на этой схеме появился еще один элемент – диод D4. Его назначение в том, чтобы предотвратить разряд времязадающего конденсатора C1 через источник питания и нагрузку — двигатель. Тем самым достигается стабилизация работы частоты ШИМ.

Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой – лампой накаливания или каким-либо нагревательным элементом.

Рисунок 3. Печатная плата набора ШИМ — регулятора.

Если приложить немного труда, то вполне возможно такую воссоздать, используя одну из программ для рисования печатных плат. Хотя, учитывая немногочисленность деталей, один экземпляр будет проще собрать навесным монтажом.

Рисунок 4. Внешний вид набора ШИМ — регулятора.

Правда, уже собранный фирменный набор, смотрится достаточно симпатично.

Вот тут, возможно, кто-то задаст вопрос: «Нагрузка в этих регуляторах подключена между +12В и коллектором выходного транзистора. А как быть, например, в автомобиле, ведь там все уже подключено к массе, корпусу, автомобиля?»

Да, против массы не попрешь, тут можно только рекомендовать переместить транзисторный ключ в разрыв «плюсового» провода. Возможный вариант подобной схемы показан на рисунке 5.

На рисунке 6 показан отдельно выходной каскад на транзисторе MOSFET. Сток транзистора подключен к +12В аккумулятора, затвор просто «висит» в воздухе (что не рекомендуется), в цепь истока включена нагрузка, в нашем случае лампочка. Такой рисунок показан просто для объяснения, как работает MOSFET транзистор.

Для того, чтобы MOSFET транзистор открыть, достаточно относительно истока подать на затвор положительное напряжение. В этом случае лампочка зажжется в полный накал и будет светить до тех пор, пока транзистор не будет закрыт.

На этом рисунке проще всего закрыть транзистор, замкнув накоротко затвор с истоком. И такое вот замыкание вручную для проверки транзистора вполне пригодно, но в реальной схеме, тем более импульсной придется добавить еще несколько деталей, как показано на рисунке 5.

Читать еще:  Двигатель 161fmj технические характеристики

Как было сказано выше, для открывания MOSFET транзистора необходим дополнительный источник напряжения. В нашей схеме его роль выполняет конденсатор C1, который заряжается по цепи +12В, R2, VD1, C1, LA1, GND.

Чтобы открыть транзистор VT1, на его затвор необходимо подать положительное напряжение от заряженного конденсатора C2. Совершенно очевидно, что это произойдет только при открытом транзисторе VT2. А это возможно лишь в том случае, если закрыт транзистор оптрона OP1. Тогда положительное напряжение с плюсовой обкладки конденсатора C2 через резисторы R4 и R1 откроет транзистор VT2.

В этот момент входной сигнал ШИМ должен иметь низкий уровень и шунтировать светодиод оптрона (такое включение светодиодов часто называют инверсным), следовательно, светодиод оптрона погашен, а транзистор закрыт.

Чтобы закрыть выходной транзистор, надо соединить его затвор с истоком. В нашей схеме это произойдет, когда откроется транзистор VT3, а для этого требуется, чтобы был открыт выходной транзистор оптрона OP1.

Сигнал ШИМ в это время имеет высокий уровень, поэтому светодиод не шунтируется и излучает положенные ему инфракрасные лучи, транзистор оптрона OP1 открыт, что в результате приводит к отключению нагрузки – лампочки.

Как один из вариантов применения подобной схемы в автомобиле, это дневные ходовые огни. В этом случае автомобилисты претендуют на пользование лампами дальнего свете, включенными вполнакала. Чаще всего эти конструкции на микроконтроллере, в интернете их полно, но проще сделать на таймере NE555.

Ранее ЭлектроВести писали, что израильский стартап REE Automotive обещает переизобрести процесс разработки электромобилей с помощью нового набора модульных платформ, подходящих практически для любого транспортного средства. Инженеры компании создали плоское модульное шасси и угловые блоки REEcorner, в которых спрятаны все функции рулевого управления, подвеска, двигатель, система торможения. Потенциальные клиенты REE должны будут определиться лишь с двумя опциями — выбрать уровень мощности электромобиля и дизайн кузова.

Спасибо!

Мы исправим ошибку в ближайшее время

Сообщить об ошибке

  • Перейти к содержанию

Инструменты сайта

Работа

Обороты двигателя

​​​​​​​

В окне программы отобразится отчет по оборотам двигателя ТС.

В случае если между соседними событиями, зафиксированными в журнале, период времени менее 8 минут, выключение зажигания на графике оборотов отображено не будет.

В отчете используются следующее цветовое обозначение:

При необходимости увеличьте масштаб графика. Выделите участок графика, который нужно увеличить, удерживая левую кнопку мыши.

Для возврата к первоначальному масштабу графика, обновите отчет.

Для отображения всплывающей подсказки с точным значением оборотов двигателя, выделите нужную точку на графике.

Значения оборотов от 0.0 до 1.0 отображают отсутствие подключения к датчику оборотов, обратитесь к установщикам бортового оборудования.
При значениях более 10.000 оборотов в минуту обратитесь к установщикам бортового оборудования для корректировки «Поправочного коэффициента для датчика оборотов».

Напряжение бортовой сети

В окне программы отобразится отчет с данными по напряжению бортовой сети ТС за выбранный период.

В легенде выберите информацию для отображения:

В случае если время между соседними событиями больше двойного значения таймера сбора данных, значение напряжения питания за данный период времени отображается равным нулю.

Для отображения всплывающей подсказки с точным значением напряжения бортовой сети ТС выделите нужную точку на графике курсором мыши.

Работа дополнительного оборудования

​​​​​​​

В одном отчете может отображаться до четырех графиков по работе дополнительного оборудования (для Терминалов Omnicomm Profi).

В окне программы отобразится отчет по работе дополнительного оборудования:

В отчете приняты следующие цветовые обозначения:

Для отображения всплывающей подсказки с точным значением объема топлива выделите нужную точку на графике курсором мыши.

Состояние рефрижератора

В окне программы отобразится отчет с данными по состоянию рефрижератора на текущий момент.

Отчет содержит следующую информацию:

Распределение нагрузки по времени

В окне отобразится отчет по распределению нагрузки ТС по времени в течение суток:

В легенде выберите информацию для отображения:

Зеленый цвет – работа двигателя под нормальной нагрузкой Желтый цвет – работа двигателя на холостом ходу Красный цвет – работа двигателя под предельной нагрузкой

Работа рефрижератора

В окне программы отобразится график с данными по работе рефрижератора за выбранный период.

Нажмите на иконку и выберите информацию для отображения:

Для построения графиков с разделением на секции нажмите правую кнопку мыши и выберите «Анализировать в разрезе секций».

Давление в шинах

В окне программы отобразится графики с данными по давлению в шинах за выбранный период.

Для отображения пробега каждого колеса за период, нажмите правую кнопку мыши и выберите «Показать пробег».

При необходимости отображения давления в шинах в барах/кПа, нажмите правую кнопку мыши и выберите соответствующее поле.

Работа за период

В окне программы отобразится отчет по оборотам двигателя ТС за выбранный период.

В отчете используются следующие цветовые обозначения:

В отчете отображается время в часах и в процентах от общего времени периода, которое ТС находилось в движении, работало на холостых оборотах и находилось с выключенным двигателем.

Нагрузка за период

Диаграмма нагрузки за период времени отображает соотношение времени периода ко времени работы двигателя на холостых оборотах, на номинальной нагрузке и на предельной нагрузке.

В отчете используются следующие цветовые обозначения:

В отчете отображается время в часах и в процентах от общего времени периода, которое ТС работало: на холостых оборотах, под нормальной нагрузкой и с превышением предельной нагрузки.

Распределение работы по времени

В отчете используются следующие цветовые обозначения:

Ссылка на основную публикацию
Adblock
detector