Генератор на постоянных магнитах из асинхронного двигателя своими руками

Вентильный реактивный электродвигатель

Вентильный реактивный электродвигатель (ВРД) — бесколлекторная синхронная машина, на обмотки статора которой подаются импульсы напряжения управляемой частоты, создающие вращающееся магнитное поле. Также известен под названием вентильно-индукторный двигатель [1] [2] , а устоявшийся англоязычный термин Switched Reluctance Motor (SRM) [3] [4] . Вращающий момент возникает за счёт стремления ротора к положению, при котором магнитный поток статора проходит по оси ротора, изготовленного из магнитомягкого материала, с наименьшим магнитным сопротивлением. Стоит различать данную электрическую машину и вентильно-индукторный двигатель с независимым возбуждением [5] , а также синхронный реактивный электродвигатель [6] (synchronous reluctance motor [7] [8] ), принцип формирования электрического момента и способ управления для которых иной.

Содержание

  • 1 Достоинства
  • 2 Недостатки
  • 3 См. также
  • 4 Примечания
  • 5 Литература
  • 6 Ссылки

Достоинства [ править | править код ]

Вентильные реактивные электродвигатели/генераторы имеют следующие достоинства:

Ротор и статор выполнены в виде пакетов листового магнитомягкого материала. На роторе ВРД отсутствуют обмотки и постоянные магниты. Фазные обмотки находятся только на статоре. Для уменьшения трудоёмкости изготовления катушек, обмотки статора могут изготавливаться отдельно, а затем надеваться на полюсы статора.

Простота обмотки якоря повышает ремонтопригодность ВРД/ВРГ, так как для ремонта достаточно сменить вышедшую из строя катушку.

Отсутствие механического коммутатора

Управление электромеханическим преобразователем электропривода/генератора осуществляется с помощью высокоэффективных силовых полупроводниковых элементов — IGBT или MOSFET (HEXFET) транзисторов, надёжность которых существенно превышает надёжность любых механических деталей, например: коллекторов, щёток, подшипников.

Отсутствие постоянных магнитов

ВРД/ВРГ не содержит постоянных магнитов ни на роторе, ни на статоре, при этом он успешно конкурирует по характеристикам с вентильными электрическими двигателями с постоянными магнитами (ВЭДПМ). В среднем, при одинаковых электрических и весогабаритных характеристиках ВРД/ВРГ имеет в 4 раза меньшую стоимость, значительно большую надёжность, более широкий диапазон частот вращения, более широкий диапазон рабочих температур. Конструктивно, по сравнению с ВЭДПМ, ВРД/ВРГ не имеет ограничения по мощности (практически, мощность ВЭДПМ ограничивается пределом около 20-40 кВТ). ВЭДПМ требуют защиты от металлической пыли, боятся перегрева и сильных электромагнитных полей, в случае короткого замыкания обмотки превращаются в самовозгорающуюся систему. Вентильные реактивные электродвигатели/генераторы свободны от всех этих недостатков.

Малое количество меди

На изготовление ВРД/ВРГ требуется в среднем в 2-3 раза меньше меди, чем для коллекторного электродвигателя такой же мощности, и в 1,3 раза меньше меди, чем для асинхронного электродвигателя.

Tепловыделение происходит в основном только на статоре, при этом легко обеспечивается герметичная конструкция, воздушное или водяное охлаждение

В рабочем режиме не требуется охлаждение ротора. Для охлаждения ВРД/ВРГ достаточно использовать наружную поверхность статора.

Высокие массогабаритные характеристики

В большинстве случаев ВРД/ВРГ может быть выполнен с полым ротором. Толщина спинки ротора при этом должна быть не менее половины ширины полюса. Подбором количества полюсов статора и ротора могут быть оптимизированы массогабаритные характеристики электродвигателя/генератора, его мощность при заданном моменте и диапазоне частоты вращения.

Простота конструкции ВРД/ВРГ снижает трудоёмкость его изготовления. В сущности, его можно изготовить даже на не специализирующемся в области электромашиностроения промышленном предприятии. Для серийного производства ВРД/ВРГ требуется обычное механическое оборудование — штампы для изготовления шихтованных сердечников статора и ротора, токарные и фрезерные станки для обработки валов и корпусных деталей. Трудоёмкие и сложные в технологическом отношении операции, например изготовление коллектора и щёток коллекторного электродвигателя или заливка клетки ротора асинхронного двигателя, здесь отсутствуют. По предварительным оценкам трудоёмкость изготовления ЭМП вентильного реактивного электродвигателя составляет на 70 % меньше трудоёмкости изготовления коллекторного и на 40 % меньше трудоёмкости изготовления асинхронного электродвигателя.

Простота обмотки статора и отсутствие обмотки и магнитов на роторе обеспечивает ВРД/ВРГ высокую гибкость компоновки. Конструкция электродвигателя/генератора может быть плоской, вытянутой, обращённой, секторной, линейной. Для выпуска целого типоряда электродвигателей/генераторов с различной мощностью можно использовать один и тот же комплект штампов для вырубки ротора и статора, поскольку для увеличения мощности достаточно увеличить соответственно длину набора ротора и статора. Не составляет труда изготовление машины с расположением статора как снаружи ротора, так и наоборот, а также встраивание электроники в корпус машины. Изменение коэффициента электромагнитной редукции позволяет создавать машины для облегчённых и, напротив, тяжёлых условий работы, включая моментные двигатели. Для привода некоторых рабочих машин выгоднее иметь линейные электродвигатели с возвратно-поступательным перемещением зубцового штока (аналога ротора). В ряде случаев может быть использована давно известная, но неэффективная в случае асинхронного электродвигателя конструкция дугостаторной машины, статор которой охватывает доступную для размещения дугу окружности ротора, в качестве которого может использоваться вал с зубчатым колесом.

Простота конструкции обеспечивает ВРД/ВРГ более высокую безотказность, чем безотказность других типов электрических машин. Конструктивная и электрическая независимость фазных обмоток обеспечивает работоспособность ВРД даже в случае полного замыкания полюсной катушки одной из фаз. ВРГ остаётся работоспособным даже после выхода из строя одной или двух фаз.

Широкий диапазон частот вращения (от единиц до сотен тысяч об/мин)

Читать еще:  Шумно работает двигатель форда

Электромагнитная редукция позволяет создавать малогабаритные «моментные» электродвигатели для приводов роботов, манипуляторов и других низкооборотных механизмов или низкооборотные высокоэффективные генераторы для ветровых или волновых электростанций. В то же время частота вращения быстроходных ВРД/ВРГ может превышать 100000 об/мин.

Высокий КПД в широком диапазоне частот вращения

Практически достижимый КПД вентильного реактивного электродвигателя/генератора мощностью 1 КВт может доходить до 90 % в диапазоне 5-10-кратной перестройки частоты вращения. КПД более мощных электрических машин может достигать 95-98 %.

ВРД часто путают с синхронным реактивным электродвигателем (СРД), обмотки якоря которого питаются синусоидально изменяющимися напряжениями без обратной связи по положению ротора. СРД имеет низкий КПД, который не превышает 50 % для маломощных электродвигателей и до 70 % для мощных электрических машин.

Импульсный характер питания ЭМП обеспечивает удобную стыковку с современной цифровой электроникой

Поскольку ВРД/ВРГ питается (возбуждается) однополярными импульсами, для управления ЭМП требуется простой электронный коммутатор. Управляя скважностью импульсов силовых транзисторов электронного коммутатора можно плавно изменять форму импульсов тока фазных обмоток электродвигателя или генератора.

Электронное управление электрическими и механическими характеристиками, режимом работы

Естественная механическая характеристика ВРД/ВРГ определяется реактивным принципом действия электрической машины и близка к гиперболической форме. Основное свойство такой характеристики — постоянство мощности на валу машины — оказывается чрезвычайно полезным для электроприводов с ограниченной мощностью источника, так как при этом легко реализуется условие его неперегружаемости. Применение замкнутой системы управления с обратными связями по скорости и нагрузке позволяет получить механические характеристики любой заданной формы, включая абсолютно жёсткие (астатические), и не ведёт к какому либо усложнению системы управления, так как её процессор обладает большой избыточностью по числу входов и выходов, быстродействию и памяти. Фактически поле доступных механических характеристик непрерывным образом покрывает все четыре квадранта плоскости момент-скорость в пределах области ограничений конкретного электропривода.

Низкая стоимость электромеханического преобразователя

Стоимость ВРД оказывается самой низкой из всех известных конструкций электрических машин. Дорогостоящим в рассматриваемой системе электропривода можно считать электронный преобразователь, который является обязательным элементом всех современных регулируемых электроприводов. Однако, цены на изделия силовой электроники по мере развития масштабов производства имеют устойчивую тенденцию к снижению. Исключение из состава ВРД/ВРГ коммутационных аппаратов, для изготовления которых необходима непрерывно дорожающая медь, также способствует уменьшению стоимости.

Наконец, экономическая эффективность ВРД повышается также в результате существенно меньшего расхода электроэнергии, обусловленного высоким КПД электродвигателя и применением наиболее экономичных стратегий управления в динамических режимах работы.

Недостатки [ править | править код ]

Вентильные реактивные электродвигатели/генераторы имеют следующие недостатки [9] :

низкий коэффициент мощности

Он обусловлен значительной величиной намагничивающей составляющей тока статора.

низкий КПД при небольших мощностях

В реактивных двигателях мощностью в несколько десятков Вт КПД составляет 30-40 %, а в двигателях мощностью до 10 Вт — не превышает 10 %.

по габаритам реактивные двигатели больше синхронных и асинхронных двигателей

Это объясняется низким КПД, малым cos ⁡ ( φ ) и небольшой величиной реактивного момента.

Самодельный генератор из постоянных магнитов на 12В

Решил показать на всеобщее обозрение свой генератор собраный на велосипедной втулке от заднего колеса. Я имею дачу на берегу реки. Очень интересно мастерить самоделки своими руками на дачу, потому расскажу о своем генераторе.

Часто летом ночюем с детьми на даче а электричества нет, и меня толкнуло собрать этот генератор. Вообще-то этот генератор уже второй. Первый был попроще и послабее. Но при ветре приёмник работал. Его фото нет, я его уже разобрал. Конструкция была не такой.

Все детали моего генератора при желании можно найти. Магниты брал от сгоревших громкоговорителей (колокольчик). Эти колокольчики висят на вокзалах и в парках ж.д оборудованых громкой связью.

Мне понадобилось 4 сгоревших динамика. Попросил сгоревшие у людей обслуживающих эти устройства. Вытащил магниты, поделил на 16 частей болгаркой. Магниты стоят друг к другу одним полюсом.

На катушке 4 вывода, потому что я наматывал сразу 2 провода диаметром по1мм каждый. Если их запараллелить — увеличится ток, а соединяя последовательно увеличится напряжение, но ток соответственно будет меньше. В общем нужного напряжения добиваюсь методом эксперимента.

Катушка намотана на куске трубы 50 с резьбой. С одной стороны щечка затянута гайкой с другой — щечка приварена. И прикреплена к алюминевой пластине а пластина уже к основанию. При необходимости можно разобрать и поменять катушку. Провод 1 мм сечением, сколько витков не считал.

Куда приспособить этот генератор ещё думаю, может заставлю речку работать.

Затраты на изготовление такие:

  • велосипедная втулка 250 руб;
  • кусок трубы с гайкой 70руб;
  • сварщику 50руб;
  • проволоку от старых тансформаторов и полоску дал тот же сварщик.

У генератора есть магнитное залипание. Стронуть с места требуется усилие. 10 -12 кгс на звездочке 70 мм. Около 3,6 Нм. На маленьких оборотах чувствуется небольшая вибрация.

Пробовал подключать маленкий телевизор, и крутил руками. Немного не хватало скорости, чтоб кинескоп развернулся. При 1обороте в секунду генератор даёт 12 вольт 0,8 ампер.

Читать еще:  Прогрев автомобиля от А до Я

Генераторы на постоянных магнитах

В последнее время большое внимание уделяется разработке и созданию генераторов с возбуждением от постоянных магнитов. Интерес к этому классу генераторов обусловлен их лучшими энергетическими показателями, простотой конструкции, большим сроком службы, надежностью, способностью работать при высоких частотах вращения в тяжелых условиях эксплуатации. Электрические машины с применением постоянных магнитов феррита бария FeBa и феррита стронция FeSr, а также магнитов ЮНДК появились в 30-е годы прошлого столетия. Невысокие удельные характеристики выпускаемых в то время постоянных магнитов ограничивали возможности по наращиванию мощности генераторов собранных на этих магнитах.

Разработанные в 80-90-е годы из нового материала постоянные магниты NdFeB получили широкое распространение в промышленном изготовлении генераторов на постоянных магнитах. В настоящее время многие мастера-исследователи собирают своими руками различные вариации генераторов, стоит только купить неодимовый магнит для генератора или найти его в неисправном электрооборудовании. Чаще всего для изготовления пробных образцов генераторов используют плоский магнит 30Х5 или 30Х10 мм, пластину 60х10х5 мм, магниты в форме бруска например: 40х10х10 мм, 100х15х15 мм.

Генератор — (лат. generator «производитель») прибор, преобразующий какой – либо вид энергии (химическую, тепловую, световую, механическую) в электрическую. В упрощенном виде в генераторе можно выделить следующие части:

а) индуктор — магнит или электромагнит, создающий магнитное поле;

б) якорь — обмотка, в которой при изменении магнитного потока возникает индуцированная ЭДС;

в) контактные кольца и скользящие по ним контактные пластинки (щетки), при помощи которых снимается или подводится ток к вращающейся части генератора.

Вращающаяся часть называется ротором генератора, а неподвижная часть его — статором.

Генератор на постоянных магнитах вырабатывает как переменный, так и постоянный ток. Переменный ток – это электрический ток, который изменяется по модулю и направлению. Переменный ток широко применяется в устройствах связи (радио, телевидение, проволочная телефония на дальние расстояния и т. п.), промышленности и бытовых целях. В основе своей работы генераторы переменного тока на постоянных магнитах используют вращающееся магнитное поле, создаваемое магнитами. В зависимости от мощности энергопотребления различают однофазные и трехфазные генераторы переменного тока. Примерами генераторов переменного тока на постоянных магнитах могут служить автомобильные генераторы на постоянных магнитах и ветрогенераторы на постоянных магнитах.

Хотя в промышленности применяется главным образом переменный ток, генераторы постоянного тока используются в различных промышленных, транспортных и других установках — в электролизной промышленности, на судах, тепловозах и т. д. Генераторы постоянного тока могут быть выполнены с магнитным, электромагнитным возбуждением и комбинированным возбуждением. Для создания магнитного потока в генераторах первого и последнего типов используют также постоянные магниты.

По типу конструкции ротора различают синхронные и асинхронные генераторы.

Синхронный генератор – механизм, работающий в режиме генерации энергии, в котором частота вращения магнитного поля стартера равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку стартера, наводит в ней ЭДС электродвижущая сила. В синхронном генераторе ротор выполнен в виде постоянного магнита. Число полюсов ротора может быть два, четыре и т.д., но обязательно кратно двум. В бытовых электростанциях чаще всего применяют ротор с двумя полюсами. Синхронный генераторы способны кратковременно выдавать ток в 3-4 раза выше номинального. Также синхронные генераторы оптимальны для подключения оборудования с высокими стартовыми токами. Опыт разработок синхронных генераторов с постоянными магнитами показал, что наибольший эффект достигается у генераторов с большими частотами вращения. Поэтому не случайно они находят применение в авиации с приводом от авиационных двигателей. Синхронные генераторы используют обычно в качестве источников переменного тока постоянной частоты и устанавливают на электростанциях, в электрических установках, на транспорте.

Асинхронный генератор работает в режиме торможения. В этом случае ротор вращается в одном направлении с магнитным полем стартера, но с опережением. Теоретически асинхронные генераторы на постоянных магнитах возможны, но на практике они редко изготавливаются. Также они имеют ряд недостатков: высокая себестоимость, зависимость от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных нагрузках; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

По типу первичного двигателя генераторы можно разделить на турбогенераторы, гидрогенераторы, двигатели внутреннего сгорания, ветрогенераторы, парогенераторы, то есть по виду двигателей, которые преобразуют природные энергетические ресурсы в механическую работу. Применение высокоэнергетических постоянных магнитов состава неодим-железо-бор позволило упростить конструкцию и значительно уменьшить размеры и вес генераторов, что послужило толчком к развитию малой ветроэнергетике, как в России, так и за рубежом.

Опыт проектирования, разработки, производства и эксплуатации генераторов с высококоэрцитивными постоянными магнитами показал их высокие технико-экономические характеристики, обоснованность и целесообразность их применения в системах электроснабжения. Особенностями параметров редкоземельных магнитов являются низкое значение магнитной проницаемости, высокое значение коэрцитивной силы по намагниченности от напряженности магнитного поля. Генераторы на неодимовых магнитах нашли применение в ветроэнергетике, автотранспорте, авиации, машиностроении и других областях.

Читать еще:  Волга 31029 технические характеристики двигателя каким заправлять бензином

Асинхронный двигатель на постоянных магнитах

В воздушных винтовых компрессорах GA VSD + установлен асинхронный электродвигатель на постоянных магнитах, который имеет множество преимуществ.

У этого электродвигателя высокий КПД, что гарантирует эффективное использование электроэнергии компрессором. Его класс энергоэффективности соответствует стандарту IE5, что говорит о его высоком качестве работы и относит к категории super premium. А высокий крутящий момент двигателя позволяет избежать его перегрузки при запуске винтового компрессора.

Возможность регулировать реактивную мощность

Асинхронный двигатель на постоянных магнитах винтовых компрессоров GA VSD+ дает возможность регулировать реактивную мощность в сети предприятия. Но что такое реактивная мощность? Это технические потери электроэнергии, вызывающие нагрев и избыточную нагрузку на сеть. И возможность регулировать эту мощность, то есть работать компенсатором реактивной мощности позволяет сократить нагрузку в сети предприятия и таким образом избежать энергозатрат.

Не требуется воздух для охлаждения двигателя, следовательно, меньше двигатель вентилятора

Во время работы винтового компрессора нагрев электродвигателя неизбежен. Это вызывает необходимость в его охлаждении, с чем справляется вентилятор. Но двигатель вентилятора тоже потребляет энергию, что приводит к энергозатратам.

В воздушных винтовых компрессорах GA VSD+ этот вопрос решен иначе. Электродвигатель имеет масляное охлаждение, как и компрессор. Этот факт ведет к тому, что охлаждение двигателя воздухом не требуется, это означает, что у двигателя нет вентилятора, следовательно энергозатраты ниже.

Класс защиты IP66 (пыль и вода)

В любых условиях работы оборудование всегда подвержено попаданию пыли и влаги, что влечет за собой неисправности. Особенно остро этот вопрос касается движущихся частей машины, а именно электродвигателя, который приводит в движение винтовой элемент компрессора. Поэтому при выборе компрессоров нельзя упускать из внимания класс защиты электродвигателя.

В воздушных винтовых компрессорах GA VSD + установлен асинхронный двигатель на постоянных магнитах с классом защиты IP66. IP66 – это высокий показатель, который гарантирует полную пыленепроницаемость и надежную защиту от влаги, что исключает поломки и неисправности двигателя от пыли или воды.

Меньше конденсация влаги в масле

Конденсация влаги в масле промышленного компрессора является проблемой, внимание на которую не обращать просто нельзя. Этот фактор приводит масло в негодность и влечет за собой скорый выход системы подачи сжатого воздуха из строя.

Поскольку в новых винтовых компрессорах GA VSD + электродвигатель находится в отсеке с контролируемой температурой, конденсацию влаги в масле удалось значительно уменьшить. Это гарантирует надежную работу воздушного компрессора в течение долгого времени.

Двигатель на постоянных магнитах расположен вертикально

Во время сжатия газа в винтовых компрессорах возникают радиальные и осевые газовые силы. Они вызывают значительные нагрузки на движущиеся элементы внутри машины (валы, подшипники) и от этого потери на их преодоление.

Уникальное вертикальное расположение асинхронного двигателя на постоянных магнитах в промышленных винтовых воздушных компрессорах GA VSD+ позволяет за счет силы тяжести компенсировать направленные вертикально вверх газовые силы, возникающие при сжатии газа. Это позволяет уменьшить нагрузку на подшипники винтового элемента и продлить их срок службы.

Двигатель занимает меньше места на 60%

Расположение электродвигателей в обычных винтовых компрессорах в большинстве случаев горизонтальное. Этот факт зачастую определяет габариты машины, от которого нужно жестко отталкиваться.

В промышленных воздушных винтовых компрессорах GA VSD + электродвигатель имеет уникальное расположение внутри корпуса. Он установлен вертикально, что существенно снижает габаритные размеры, делая его компактнее.

Подшипник, который смазывается автоматически

Любое компрессорное оборудование нуждается в сервисном обслуживании для долгой и надежной работы. И одними из самых важных элементов при таком обслуживании являются подшипники, поскольку без них валы машины просто не смогут вращаться. Поэтому их нужно регулярно смазывать.

В винтовых компрессорах GA VSD+ двигатель имеет один подшипник, а благодаря масляному охлаждению двигателя он смазывается автоматически. Таким образом этот факт позволяет экономить время на сервисном обслуживанию и обеспечивает дополнительную защиту воздушного компрессора.

Уменьшения элементов, требующих охлаждения

В винтовых компрессорах GA VSD+ электродвигатель имеет масляную рубашку охлаждения за счет чего количество элементов, требующих дополнительного охлаждения, значительно уменьшилась. Это позволило уменьшить двигатель вентилятора и сократить потребление электроэнергии.

Потребление энергии как у компрессоров с фиксированной скоростью вращения

Технология VSD+ винтовых компрессоров GA VSD+ позволяет регулировать скорость вращения электродвигателя, меняя нагрузку согласно потребности в сжатом воздухе. Но, кроме этого, благодаря двигателю GA VSD+ может работать и на максимальной нагрузке практически все время, потребляя при этом столько энергии сколько и обычные компрессоры с фиксированной скоростью вращения. Это говорит о том, что GA VSD+ ничего не теряет в своих характеристиках даже при максимальной загрузке.

Проверенная надежная конструкция, прошедшая испытания, которые включали тысячи часов наработки

Воздушные винтовые компрессоры GA VSD+ гарантируют надежное исполнение, поскольку перед выходом на рынок они прошли все проверки и испытания, включающие тысячи часов работы в самых сложных условиях эксплуатации.

Ссылка на основную публикацию
Adblock
detector