Характеристика коллекторных тяговых двигателей

Коллекторный электродвигатель постоянного тока

  • Основные параметры электродвигателя постоянного тока
  • Характеристики коллекторного электродвигателя постоянного тока

Конструкция коллекторного электродвигателя постоянного тока

Статор — неподвижная часть двигателя.

Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.

Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.

Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.

Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].

Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

    Преимущества:
  • лучшее соотношение цена/качество
  • высокий момент на низких оборотах
  • быстрый отклик на изменение напряжения
    Недостатки:
  • постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства

Коллекторный двигатель с обмотками возбуждения

    По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:
  • независимого возбуждения
  • последовательного возбуждения
  • параллельного возбуждения
  • смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

    Преимущества:
  • практически постоянный момент на низких оборотах
  • хорошие регулировочные свойства
  • отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
    Недостатки:
  • дороже КДПТ ПМ
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].

Двигатель последовательного возбуждения

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа &lt Iном) и магнитная система двигателя не насыщена (Ф

Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

,

  • где M – момент электродвигателя, Н∙м,
  • сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • Ia – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

    Преимущества:
  • высокий момент на низких оборотах
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • низкий момент на высоких оборотах
  • дороже КДПТ ПМ
  • плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].

    Преимущества:
  • хорошие регулировочные свойства
  • высокий момент на низких оборотах
  • менее вероятен выход из под контроля
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • дороже других коллекторных двигателей
Читать еще:  Характеристика дизельного двигателя iveco

Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.

Характеристики коллекторного электродвигателя постоянного тока

Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.

Основные параметры электродвигателя постоянного тока

Постоянная момента

Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:

,

  • где Z — суммарное число проводников,
  • Ф – магнитный поток, Вб [1]

Характеристика коллекторных тяговых двигателей

ТЯГОВЫЕ ЭЛЕКТРОДВИГАТЕЛИ ВАГОНА ЛМ-68

25. Общие сведения

Конструкция тяговых двигателей вагона должна обеспечить:

наименьшие размеры из-за ограниченного места на тележке вагона при достаточной механической ‘прочности деталей и узлов;

плотное прилегание подшипниковых щитов и коллекторных крышек для исключения попадания внутрь двигателя снега, воды я Пыли;

нормальную работу при различных частотах вращения якоря, .перегрузках и частых пусках;

широкую зону безыскровой коммутации при вращении двигателя в разные стороны;

высокую электрическую прочность изоляции.

На трамвайных вагонах устанавливают тяговые электродвигатели постоянного тока напряжением 550—275 В.

При последовательном возбуждении через якорь и обмотки возбуждения (катушки главных полюсов) проходит одинаковый ток, вследствие чего для создания необходимого магнитного потока катушки изготавливают из провода большого сечения с малым числом витков. В двигателе с параллельным или независимым возбуждением ток якоря значительно превосходит ток ;в обмотке возбуждения, следовательно, для создания необходимого потока катушки изготавливают из провода малого сечения с большим числом витков.

Двигатели со смешанным возбуждением по своим свойствам .приближаются к первым двум типам в зависимости от соотношения намагничивающих сил последовательных и независимых обмоток возбуждения. Ранее наибольшее применение имели двигатели с последовательным возбуждением. До широкого применения двигателей со смешанным возбуждением на вагонах устанавливали промежуточный тип двигателя (ДК-255Г, ДК.-257А, ДК-258А) с последовательным возбуждением и катушками подмагничивания, включаемыми в контактную сеть параллельно цепи двигателя (якоря и обмотки последовательного возбуждения).

26. Технические данные и электромеханические характеристики тяговых электродвигателей трамвайного вагона ЛМ-68

На трамвайных вагонах устанавливают быстроходные двигатели, имеющие стальные остовы цилиндрической формы, .которые в отличие от старых типов двигателей с опорно-осевой (трамвайной) подвеской имеют опорно-рамную (независимую) подвеску на тележке.

В 1970 г. закончена работа .по унификации тяговых электродвигателей. Для трамвайных вагонов JIM-68 применяют двигатели со смешанным возбуждением ДК-259Г-7 с кремнийорганической изоляцией. Выпущена также партия двигателей с изоляцией катушек «Монолит-2». Технические данные тяговых электродвигателей приведены в табл. 2.

(Скоростные характеристики двигателей отличаются друг от друга в зависимости от способа присоединения обмоток возбуждения двигателя к якорю. При вращении двигателя в якоре возникает противоэлектродвижущая сила, имеющая направление против приложенного напряжения. Значение ее зависит от частоты вращения якоря, .магнитного потока и параметров двигателя:

Следовательно, частота вращения якоря, от которой зависит скорость движения вагона,

где С — постоянная величина, зависящая от параметров двигателя; Ф — магнитный поток главного .полюса.

Основной магнитный поток для создания вращающего момента якоря создается током независимой обмотки главных полюсов. Кроме четырех главных полюсов, в двигателе имеются четыре дополнительных полюса. Ток в их обмотках .создает магнитный поток, ‘компенсирующий реакцию якоря и уменьшающий искрение щеток на коллекторе. В двигателях с последовательным возбуждением магнитный поток катушек главных полюсов и ток якоря изменяются с изменением нагрузки. Вследствие этого частота вращения вала двигателя сильно меняется с изменением нагрузки. Однако при этом уменьшается опасность перегрузки двигателя, так как рост нагрузки одновременно с увеличением тока якоря вызывает рост тока и в катушках, что приводит к увеличению магнитного потока и уменьшению частоты вращения якоря и скорости движения вагона. При уменьшении нагрузки на двигатель частота вращения его вала возрастает. Если полностью снять .нагрузку с двигателя, магнитный поток его практически будет равен нулю (если пренебречь остаточным магнетизмом) и двигатель разовьет большую частоту вращения. Подобное явление на практике называют «разносом» двигателя. Опасность чрезмерного увеличения частоты .вращения с уменьшением нагрузки отсутствует, так как вал двигателя через зубчатую передачу связан с колесными парами подвижного состава. Двигатель может развить чрезмерно большую частоту вращения вала только при повреждении зубчатой передачи. У двигателей с параллельным возбуждением частота вращения якоря практически не зависит от нагрузки, так как ток в катушках, а следовательно, и магнитный поток зависят только от напряжения контактной сети.

Рост вращающего момента и силы тяги двигателей с последовательным возбуждением при движении поезда «а подъеме вызывает значительное снижение частоты вращения, что приводит к малому росту отдаваемой двигателем мощности и не вызывает перегрузку его. Имеет место автоматическое регулирование мощности при изменении нагрузки. У двигателей с параллельным возбуждением рост вращающего момента при незначительном изменении частоты вращения вызывает рост отдаваемой двигателем мощности и вызывает его перегрузку.

Для изменения частоты вращения вала двигателя с независимым возбуждением регулируют ток в обмотке возбуждения реостатом, включенным последовательно в ее цепь. Это свойство широко используют у двигателей со смешанным возбуждением. В тяговом режиме направление тока в катушках последовательного и (независимого возбуждения одинаково и магнитные потоки .их складываются. Варьируя соотношением

намагничивающих сил в последовательной и независимой обмотках, можно достичь плавного изменения частоты вращения с меньшей зависимостью от напряжения контактной сети и способностью к перегрузкам. Как правило, в двигателях со смешанным возбуждением большая часть магнитного потока создается током в обмотках независимого возбуждения.

Электромеханическими характеристикам b тяговых электродвигателей называют кривые зависимости изменения силы тяги F, скорости движения v и коэффициента полезного действия n двигателя от тока якоря I при постоянном значении приложенного напряжения U. Характер кривых зависит от системы возбуждения двигателей, особо резко отличаются скоростные характеристики двигателей с последовательным и независимым возбуждением. Из электромеханических характеристик тягового электродвигателя ДК-259Г-7 (рис. 46) видно, что он имеет так называемую низколежащую скоростную характеристику. Двигатели с низколежащей характеристикой позволяют осуществлять выход на автоматическую характеристику при низких скоростях движения около 17 км/ч, применяя постоянное соединение двигателей (одноступенчатый пуск). Расход энергии в реостатах сохраняется примерно таким же, как при пуске с последовательным и последовательно-параллельным соединениями двигателей.

Рис. 46. Электромеханические характеристики тягового двигателя ДК-259Г-7

Что такое коллекторный двигатель постоянного тока и как он работает

Коллекторные электродвигатели довольно распространены в быту и на производстве. Они используются для привода различных механизмов, электроинструмента, в автомобилях. Отчасти популярность обусловлена простой регулировкой оборотов ротора, но есть и некоторые ограничения их применения и конечно же недостатки. Давайте разберемся что такое коллекторный двигатель постоянного тока (КДПТ), какие бывают разновидности данного вида электродвигателей и где они используются.

  • Определение и устройство
  • Принцип действия
  • Виды КДПТ и схемы соединения обмоток
  • Схема подключения и реверс
  • Сфера применения
  • Достоинства и недостатки
Читать еще:  Двигатель bse 1 6 на каких авто

Определение и устройство

В справочниках и энциклопедиях приводят, такое определение:

«Коллекторным называется электродвигатель, у которого датчиком положения вала и переключателем обмоток является одно и то же устройство – коллектор. Такие двигатели могут работать либо только на постоянном токе, либо и на постоянном, и на переменном.»

Коллекторный электродвигатель, как и любой другой, состоит из ротора и статора. В этом случае ротор – является якорем. Напомним, что якорем называется та часть электрической машины, которая потребляет основной ток, и в которой индуцируется электродвижущая сила.

Для чего нужен и как устроен коллектор? Коллектор расположен на валу (роторе), и представляет собой набор продольно расположенных пластин, изолированных от вала и друг от друга. Их называют ламелями. К ламелям подключаются отводы секций обмоток якоря (устройство якорной обмотки КДПТ вы видите на группе рисунков ниже), а точнее к каждой из них подключен конец предыдущей и начало следующей секции обмотки.

Ток к обмоткам подаётся через щетки. Щётки образуют скользящий контакт и во время вращения вала соприкасаются то с одной, то с другой ламелью. Таким образом происходит переключение обмоток якоря, для этого и нужен коллектор.

Щеточный узел состоит из кронштейна с щеткодержателями, непосредственно в них и устанавливаются графитовые или металлографитовые щетки. Для обеспечения хорошего контакта щетки прижимаются к коллектору пружинами.

На статоре устанавливаются постоянные магниты или электромагниты (обмотка возбуждения), которые создают магнитное поле статора. В литературе по электрическим машинам вместо слова «статор» чаще используют термины «магнитная система» или «индуктор». На рисунке ниже изображена конструкция ДПТ в разных проекциях. Теперь же давайте разберемся как работает коллекторный двигатель постоянного тока!

Принцип действия

Когда ток протекает через обмотку якоря, возникает магнитное поле, направление которого можно определить с помощью правила буравчика. Постоянное магнитное поле статора взаимодействует с полем якоря, и он начинает вращаться благодаря тому, что одноименные полюса отталкиваются, притягиваясь к разноимённым. Что отлично иллюстрирует рисунок ниже.

При переходе щеток на другие ламели ток начинает протекать в обратную сторону (если рассматривать приведенный выше пример), магнитные полюса меняются местами и процесс повторяется.

В современных коллекторных машинах не используется двухполюсная конструкция из-за неравномерности вращения, в момент переключения направления тока силы, действующие на якорь, будут минимальны. А если включить двигатель, вал которого остановился в этом «переходном» положении — он может и не начать вращаться совсем. Поэтому на коллекторе современного двигателя постоянного тока расположено значительно больше полюсов и секций обмоток, уложенных в пазах шихтованного сердечника, таким образом достигаются оптимальные плавность движения и момент на валу.

Принцип работы коллекторного двигателя простым языком для чайников раскрыт в следующем видеоролике, убедительно рекомендуем ознакомиться.

Виды КДПТ и схемы соединения обмоток

По способу возбуждения коллекторные двигатели постоянного тока различают двух типов:

  1. С постоянными магнитами (маломощные двигатели мощностью десятки и сотни Ватт).
  2. С электромагнитами (мощные машины, например, на грузоподъёмных механизмах и станках).

Различают такие типы КДПТ по способу соединения обмоток:

  • Последовательного возбуждения (в старой отечественной литературе и от старых электриков можно услышать название «Сериесные», от англ. Serial). Здесь обмотка возбуждения подключена последовательно с обмоткой якоря. Высокий пусковой момент – преимущество такой схемы, а её недостаток – падение частоты вращения с увеличением нагрузки на валу (мягкая механическая характеристика), и то что двигатель идёт вразнос (неконтролируемый рост оборотов с последующим повреждением опорных подшипников и якоря) если работают на холостом ходу или с нагрузкой на валу в меньше 20-30% от номинальной.
  • Параллельного (также называют «шунтовые»). Соответственно обмотка возбуждения подключена параллельно обмотке якоря. На низких оборотах на валу высокий момент и стабилен в относительно широком диапазоне оборотов, а с увеличением оборотов он уменьшается. Преимущество — стабильные обороты в широком диапазоне нагрузки на валу (ограничивается его мощностью), а недостаток – при обрыве в цепи возбуждения может пойти вразнос.
  • Назависимого. Обмотки возбуждения и якоря питаются от разных источников. Такое решение позволяет точнее регулировать обороты вала. Особенности работы похожи на ДПТ с параллельным возбуждением.
  • Смешанного. Часть обмотки возбуждения подключена параллельно, а часть последовательно с якорем. Совмещают достоинства последовательного и параллельного типов.

Условное графическое обозначение на схеме вы видите ниже.

В иностранной и современной отечественной литературе, а также на схемах можно встретить и другое представление УГО для КДПТ, как было приведено на предыдущем рисунке в виде круга с двумя квадратами, где круг обозначает якорь, а два квадрата – щетки.

Схема подключения и реверс

Схема соединения обмоток статора и ротора определяется при изготовлении, и, в зависимости от того, где применяется конкретный двигатель, нужно выбирать соответствующее решение. В определенных режимах работы (тормозной режим, например) схемы включения обмоток могут изменяться или вводиться дополнительные элементы.

Включают маломощные коллекторные двигатели постоянного тока с помощью: полупроводниковых ключей (транзисторов), тумблеров или кнопок, специализированных микросхем-драйверов или с помощью маломощных реле. Крупные мощные машины подключаются к сети постоянного тока через двухполюсные контакторы.

Ниже вы видите реверсивную схему подключения двигателя постоянного тока к сети 220В. На практике, на производстве схема будет аналогичной, но диодного моста в ней не будет, поскольку все линии для подключения таких двигателей прокладываются от тяговых подстанций, где переменный ток выпрямляется.

Реверс осуществляется путем смены полярности на обмотке возбуждения или на якоре. Изменить полярность и там, и там нельзя, поскольку направление вращения вала не изменится, как это происходит с универсальными коллекторными двигателями при работе на переменном токе.

Для плавного пуска двигателя в цепь питания обмотки якоря или обмотки якоря и обмотки возбуждения (в зависимости от схемы их соединения) вводят регулировочное устройство, например, реостат, таким же образом регулируют и частоту вращения вала, но вместо реостата чаще используют набор постоянных резисторов, подключаемых с помощью набора контакторов.

В современных приложениях частота оборотов изменяется с помощью широтно-импульсной модуляции (ШИМ) и полупроводникового ключа, именно так это и сделано в аккумуляторном электроинструменте (шуруповёрт, например). КПД такого способа значительно выше.

Сфера применения

Коллекторные двигатели постоянного тока применяются повсеместно как в быту, так и в промышленных устройствах и механизмах, давайте кратко рассмотрим их область применения:

  • В автомобилях используют 12В и 24В коллекторные ДПТ для привода щеток стеклоочистителей (дворников), в стеклоподъёмниках, для запуска двигателя (стартер — это коллекторный двигатель постоянного тока последовательного или смешанного возбуждения) и приводах другого назначения.
  • В грузоподъёмных механизмах (краны, лифты и пр.) используются КДПТ, которые работают от сети постоянного тока с напряжением 220В или любым другим доступным напряжением.
  • В детских игрушках и радиоуправляемых моделях малой мощности используются КДПТ с трёхполюсным ротором и постоянными магнитами на статоре.
  • В ручном аккумуляторном электроинструменте — разнообразные дрели, болгарки, электроотвертки и т.д.

Отметим, что в современный дорогой электроинструмент устанавливают не коллекторные, а бесколлекторные электродвигатели.

Достоинства и недостатки

Разберем плюсы и минусы коллекторного двигателя постоянного тока. Преимущества:

  1. Соотношение размеров к мощности (массогабаритные показатели).
  2. Простота регулировки оборотов и реализации плавного пуска.
  3. Пусковой момент.

Недостатки у КДПТ следующие:

  1. Износ щеток. Высоконагруженные двигатели, которые регулярно эксплуатируются, требуют регулярного осмотра, замены щеток и обслуживания коллекторного узла.
  2. Коллектор изнашивается из-за трения щеток.
  3. Возможно искрение щеток, что ограничивает применение в опасных местах (тогда используют КДПТ взрывозащищенного исполнения).
  4. Из-за постоянного переключения обмоток этот тип двигателей постоянного тока вносит помехи и искажения в питающие цепи или электросеть, что приводит к сбоям и проблемам в работе других элементов схемы (особенно актуально для электронных схем).
  5. У ДПТ на постоянных магнитах магнитные силы со временем ослабевают (размагничиваются) и эффективность двигателя снижается.
Читать еще:  Автосигнализации с запуском двигателя по температуре двигателя

Вот мы и рассмотрели, что такое коллекторный двигатель постоянного тока, как он устроен и какой у него принцип действия. Если остались вопросы, задавайте их в комментариях под статьей!

Тепловоз 2М62 | Тяговый электродвигатель ЭД-118А

Колесные пары тепловоза приводятся во вращение тяговыми электродвигателями типа ЭД-118А через одноступенчатый прямозубый редуктор.

На тепловозе установлены шесть тяговых электродвигателей, по одному на каждую ось тележки. Тяговый электродвигатель представляет собой электрическую машину постоянного тока с последовательным возбуждением (рис. 83). Стрелками на рисунке показано направление протекания тока, при котором полюсы будут иметь обозначенную на схеме полярность, а якорь — обозначенное направление вращения.

Две ступени ослабления возбуждения и гиперболическая внешняя характеристика тягового генератора обеспечивают изменение частоты вращения электродвигателя в широком диапазоне. Как и любая электрическая машина постоянного тока, тяговый электродвигатель имеет главные и добавочные полюсы, а также якорную обмотку с коллектором.

Магнитный поток главных полюсов с обтекаемой током якорной обмоткой (якорем) создают на валу тягового электродвигателя вращающий момент, передаваемый через редуктор на колесные пары. Добавочные полюсы тягового электродвигателя служат для обеспечения коммутации щеток-на коллекторе без подгара коллекторных пластин. От надежной работы щеток и коллектора зависит надежная работа тягового электродвигателя. Вентиляция электродвигателя на тепловозе принудительная.

Рис. 83. Схема внутренних электрических соединений тягового электродвигателя ЭД-118А (вид со стороны коллектора). Штриховой линией показаны соединения со стороны противоположной коллектору (обозначения см. на рис. 81)

Техническая характеристика тягового электродвигателя

  • Мощность, кВт 192
  • Ток продолжительный, А 595
  • Напряжение длительное, В 356
  • Ток максимальный, А 1000
  • Напряжение максимальное, В 570
  • Частота вращения продолжительная, об/мин 474
  • Частота вращения максимальная, об/мин 2290
  • Марка щеток ЭГ-61
  • Размеры щеток, мм 2 (12,5 x 40 X60)
  • Нажатие на щетку, кгс 4,2—4,8
  • Расход охлаждающего воздуха, м3/мин 49
  • К. п. д., % 90,5
  • Масса, кг 3100

Электромеханические характеристики электродвигателя ЭД-118А приведены на рис. 84. В отличие от обычных электрических машин постоянного тока электродвигатель ЭД-118А имеет конструктивные особенности, связанные со специфическими условиями работы и установкой его на тепловозе (моторно-осевые подшипники, восьмигранная форма магнитопровода, повышенное удельное давление щеток на коллекторе).

Габарит электродвигателя (рис. 85) ограничивается диаметром движущегося колеса тепловоза и шириной колеи, поэтому магнитопровод выполнен восьмигранной формы. Остов магнитопровода отлит из углеродистой стали с небольшим содержанием углерода. Остов также служит каркасом для сборки всего тягового электродвигателя. На остове магнитопровода с одной стороны выполнены расточки под моторно-осевые вкладыши и места установки корпусов моторно-осевых подшипников. С противоположной стороны остова имеются носики (два выступа), служащие для закрепления электродвигателя на тележке тепловоза. Между двумя моторно-осевыми подшипниками расположена клица, в которой закреплены выводные кабели: два от якоря с маркировкой Я и Д# и два от катушек четырех главных полюсов с маркировкой К и КК- Для улучшения работы щеточно-коллекторного узла коллекторы тяговых электродвигателей выполнены из меди с присадкой либо кадмия, либо серебра. Это позволяет повысить термическую стойкость коллекторной меди и уменьшить износ коллектора в период эксплуатации.

Рис. 84. Электромеханические характеристики электродвигателя ЭД-118А

Рис. 85. Тяговый электродвигатель ЭД-118А: 1 — якорь; 2 18 — крышки подшипников; 3 —упорное кольцо; 4, 16 — роликовые подшипники; 5, 14- подшипниковые щиты; 6 — коллектор; 7 -щеткодержатель; 8± добавочный полюс; 9 -главный полюс; 10 — обмотка якоря; //-сердечник якоря; 12 -бандаж; 13 остов; 15 -воздушный канал; 17, 19 —лабиринтные кольца; 20 — вал якоря- 21_вкладыш моторно-осевого подшипника; 22 -шапка подшипника; 23 — клицы; 24 — трубка для . ‘ смазки подшипника; 25 — выводные кабели

Конструкция коллектора обычная, арочная. Конус коллектора и болты выполнены из легированной стали. Замок между коллекторной втулкой и нажимным конусом уплотнен для исключения попадания влаги внутрь коллектора. Коллекторная медь от корпуса изолирована при помощи миканитовых манжет. Коллекторные пластины изолированы друг от друга миканитовыми прокладками. В эксплуатации особенно внимательно необходимо следить за тем, чтобы миканитовые прокладки не выступали над рабочей поверхностью коллектора, а имели западание до 1,5 мм.

Щеткодержатели выполнены из литого латунного корпуса с пружинами часового типа. Нажатие пружины на щетку регулируется на снятом с тягового электродвигателя щеткодержателе. От корпуса щеткодержатели изолированы либо фарфоровым изолятором, либо изолятором из пластмассы.

Якорь тягового электродвигателя динамически балансируют грузами, размещаемыми в специальных канавках как со стороны коллектора, так. и со стороны, противоположной коллектору. Всякое нарушение балансировки приводит к повышенной вибрации, что может вызвать нарушение коммутации, повреждение изоляции и подшипников. Обмотка якоря в пазах удерживается клиньями, а в лобовых частях — бандажом из специальной однонаправленной стеклоленты. Бандаж из стеклолент более надежный, а случайная его размотка не приводит к таким тяжелым последствиям, как в случае бандажа из стальной проволоки.

Изоляция якоря выполнена на основе стеклрсодержащих материалов и эпоксидных смол. Якорь пропитан в лаке на эпоксидной основе и окрашен электроизоляционной эмалью, устойчивой в условиях высокого увлажнения и значительных колебаний температур. В целом изоляция якоря относится к классу Р и допускает перегрев до 135° С.

Главные полюсы состоят из шихтованных сердечников и катушек. Сердечники полюсов крепят к магнитопроводу с помощью болтов из легированной стали. Изоляция катушек главных полюсов класса Р, допускающая перегревы до 160° С. Добавочные полюсы выполнены из сплошного сердечника и катушек. К магнитопроводу сердечник крепится болтами из легированной стали. Изоляция катушек класса Р, допускающая перегрев до 160° С. Между сердечником полюса и магни-топроводом имеется прокладка из немагнитного материала. Каждый из полюсов двигателя, состоящий из сердечника с катушкой, представляет собой монолитный блок, что исключает перетирание изоляции.

С 1974 г. катушки имеют вибростойкие выводы. Межкатушечные соединения между главными полюсами выполнены гибкими наборными шинами, а между добавочными полюсами — специальным кабелем.

Надежность межкатушечных соединений в эксплуатации зависит от контроля затяжки болтовых креплений, причем следует применять болты из стали 40Х. Технические данные обмоток полюсов и якоря тягового электродвигатели приведены в табл. 7.

Подшипниковые узлы тягового электродвигателя выполнены на роликовых подшипниках. Смазка ЖРО, применяемая для роликовых подшипников, соответствует условиям работы тяговых электродвигателей в различных климатических зонах. В эксплуатации не следует допускать смешение различных смазок.

Условия работы тяговых электродвигателей на. тепловозе можно назвать жесткими: большой диапазон изменения температуры окружающей среды (от —50 до +40° С), снег, дождь, пыль, ‘ тряска и вибрация, особенно в условиях суровых зим, когда железнодорожное полотно промерзает. Но самой тяжелой оказывается работа тяговых электродвигателей при изношенных зубьях тягового редуктора и изношенных вкладышах моторно-осевых подшипников. При этом возникают нагрузки, вызывающие преждевременный выход из строя не только роликовых подшипников, но и изоляции тяговых электродвигателей. Поэтому за состоянием тягового редуктора, моторно-осевых подшипников необходимо внимательно следить в эксплуатации.

Ссылка на основную публикацию
Adblock
detector