Характеристики электрической части двигателя

Электрические машины. Техническое описание

1 Общие сведения, назначение

Электрические машины служат для преобразования механической энергии в электрическую (генераторы), электрической энергии в механическую (двигатели), а также для преобразования частоты переменного тока, одного рода тока в другой, например постоянного тока в переменный, постоянного тока одного напряжения в постоянный ток другого напряжения (преобразователи).

Электрические машины бывают одностороннего и двустороннего направления вращения. Электрические машины одностороннего вращения могут иметь правое или левое направление вращения. Правым направлением вращения машины с односторонним приводом считается вращение по часовой стрелке, если смотреть на машину со стороны присоединения ее к первичному двигателю или рабочему механизму; левым соответственно будет направление вращения электрической машины против часовой стрелки.

Электрическая машина обладает свойством обратимости, т. е. способностью работать в режиме генератора электрического тока, если привести ее в движение каким-либо первичным двигателем, и, наоборот, в режиме электродвигателя, если подвести к ней электрическое напряжение. Электрическая машина, работающая в качестве двигателя, преобразует подводимую к ней электрическую энергию в механическую, используемую для приведения в действие различных механизмов и станков. Эта же машина может вырабатывать электрическую энергию, если будет приведена в действие двигателем внутреннего сгорания или паровой турбиной и возбуждена от постороннего источника электроэнергии, т. е. будет работать в режиме генератора. Однако каждая электрическая машина, выпускаемая машиностроительным заводом, обычно предназначена для одного определенного режима работы — в качестве генератора или электродвигателя.

Асинхронной называют электрическую машину переменного тока, у которой частота вращения ротора меньше частоты вращения магнитного поля статора и зависит от нагрузки. Асинхронные двигатели делятся на коллекторные и бесколлекторные. Преимущественное распространение получили бесколлекторные асинхронные электрические машины, применяемые там, где не требуется постоянная частота вращения. Эти машины бывают двух исполнений по ротору: с короткозамкнутым и фазным.

Асинхронные двигатели с фазным ротором снабжены контактными кольцами, установленными на одном валу с ротором. Преимущества электродвигателей с фазным ротором перед электродвигателями с короткозамкнутым состоят главным образом в том, что они позволяют регулировать в широких пределах пусковой момент, пусковой ток и частоту вращения. Их используют для привода механизмов, требующих регулирования частоты вращения, а также в нерегулируемом приводе с тяжелыми условиями пуска, например подъемно-транспортных механизмов.

Асинхронные двигатели, которые преобразуют электрическую энергию в механическую, являются наиболее распространенными. Они широко применятся в электроприводах большинства механизмов. Это объясняется простотой их конструкции, надежностью и высоким коэффициентом полезного действия.

2 Технические характеристики

Электрические машины характеризуются различными показателями, в число которых входят номинальные мощность, напряжение, режим работы, ток, условия применения, частота вращения, а также коэффициент полезного действия (кпд) и другие данные, относящиеся к электрическим машинам и определяющие допустимые режимы их работы.

Номинальная мощность электрических машин (выражаемая в ваттах, киловаттах и мегаваттах) для электродвигателей — полезная механическая мощность на валу.

Номинальное напряжение — это напряжение, соответствующее номинальному режиму работы электрической машины. Номинальным напряжением трехфазной электрической машины является ее междуфазное (линейное) напряжение.
Номинальный режим работы — это такой режим, на который электрическая машина рассчитана и для которого она предназначена предприятием-изготовителем. Он указывается на заводском щитке машины.

Номинальный ток — это ток, соответствующий номинальному режиму работы электрической машины.

Номинальные условия применения электрической машины обычно оговорены в стандарте или технических условиях на данную машину.

Номинальная частота вращения обычно соответствует работе электрической машины при номинальном напряжении, мощности, частоте тока и номинальных условиях применения.

Коэффициент полезного действия — отношение полезной (отдаваемой) активной мощности электрической машины к затрачиваемой (подводимой) активной мощности.

Нагрузка электрической машины — это мощность, которую она развивает в данный момент времени, а перегрузка — превышение фактической нагрузки машины над ее номинальной нагрузкой. Перегрузку выражают в процентах или долях номинальной нагрузки.

Рабочая температура активной части электрической машины — установившаяся температура этой части, соответствующая номинальному режиму работы при неизменной номинальной температуре охлаждающей среды.

Превышение температуры отдельной части электрической машины — разность между температурой этой части и охлаждающей среды.

Асинхронные двигатели выпускаются едиными сериями. В 70-х годах XX в. была разработана и внедрена единая серия 4А асинхронных двигателей. Она и сейчас используется во многих странах СНГ и Европы. Серия включает двигатели мощностью 0,06 — 400 кВт. Серия 4А имеет 25 модификаций: с короткозамкнутым ротором (4А), с фазным ротором (4АК), с повышенным пусковым моментом (4АР), с повышенным скольжением (4АС), многоскоростные (4АМ), специализированные, малошумные (А. Н), лифтовые (4А. НЛБ), сельскохозяйственные (4А. СХ) и др. Каждая модификация имеет ряд исполнений. Так, серия 4А включает около 30 000 исполнений.

Рисунок 1 – Основные установочные размеры электрических машин на лапах и их обозначение по PC и МЭК-72 (в скобках)

Определяющим размером в серии является стандартная высота оси вращения Н (рисунок 1), которая для серии 4А составляет 50 — 355 мм. Для каждой высоты вращения изготовляются машины, которые отличаются длиной станины: S — короткая (от англ. short); M — средняя (medium); L — длинная (long).

Асинхронные двигатели рассчитаны на частоту электрического тока источника питания 50 Гц, напряжение 220, 380, 660 В, синхронную частоту вращения 500, 600, 750, 1000, 1500 и 3000 об/мин.

Расчетный срок службы двигателя 20 лет.
Асинхронные двигатели единой серии 4А напряжением свыше 1000 В (высоковольтные) имеют мощность более 400 кВт.

3 Устройство, принцип действия

Асинхронные двигатели по конструкции бывают двух основных типов: с короткозамкнутым ротором и с фазным ротором (их также называют двигателями с контактными кольцами). Статоры этих двигателей одинаковые.

Двигатель с короткозамкнутым ротором состоит из следующих основных узлов; статора, ротора, переднего и заднего подшипниковых щитов, вентилятора, коробки выводов.

Сердечник статора, представляющий собой полый цилиндр, набирается из отдельных листов, которые штампуют из электротехнической стали толщиной 0,5 мм. Перед сборкой листы изолируют путем оксидирования или лакирования, иногда используют сталь с изоляционным покрытием. На внутренней поверхности статора выштамповывают пазы, в которые укладывают обмотку.

Сердечник статора закрепляется в корпус. Сердечник ротора также собирают из листов электротехнической стали. В короткозамкнутых роторах применяют полузакрытые или закрытые пазы овальной, прямоугольной или фигурной формы (рисунок 2). Сердечник ротора напрессовывается на вал ротора и закрепляется шпонкой, накаткой или с помощью переходной втулки.

Рисунок 2 – Формы пазов роторов асинхронных электродвигателей:
а — г — глубокие; д — з — фигурные

Обмотка ротора выполняется в виде беличьей клетки, она является короткозамкнутой и никаких выводов не имеет. Клетка состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (рисунок 3). Стержни обмотки вставляют в пазы сердечника ротора без изоляции. В двигателях до 100 кВт обмотка ротора выполняется заливкой пазов расплавленным алюминием. Одновременно заливаются и замыкающие кольца с вентиляционными крыльями, которые необходимы для лучшего охлаждения двигателя. В замыкающих кольцах с обеих сторон сердечника ротора расположены пазы для крепления балансировочных грузов.

Читать еще:  Автоматическое поддержание оборотов двигателя

В подшипниковых щитах имеются центральные отверстия для размещения роликового (со стороны выводного конца вала) и шарикового (с другой стороны) подшипников. В двигателях малой мощности устанавливают два шариковых подшипника.
На станине сделано отверстие с резьбой, в которое закручивают болт для соединения шины заземления. На конце вала находится шпонка для крепления полумуфты.

Охлаждение двигателя осуществляется вентилятором, установленным снаружи на конце вала, и вентиляционными лопатками (крыльями), отбрасывающими воздух на лобовые части обмотки статора. Поток воздуха направляется кожухом вдоль внешней поверхности станины с ребрами. Кожух крепится к щиту двигателя винтами и имеет в торцевой части отверстия, через которые засасывается воздух.

Рисунок 3 – Короткозамкнутый ротор асинхронного двигателя с алюминиевой литой клеткой:
1 — вал; 2 — торцевые замыкающие кольца; 3 — вентиляционные лопатки; 4 — стержень; 5 — сердечник

Коробка выводов находится сверху двигателя и может быть повернута в положение, удобное для соединения с питающим кабелем через сальник.
В верхней части станины закручен рым-болт, предназначенный для подъема и монтажа двигателя.

Станину крепят к фундаменту с помощью лап, которые имеют отверстия под крепежные болты. Лапы отлиты как одно целое со станиной.

По степени защиты и способу охлаждения асинхронные двигатели с короткозамкнутым роторам выпускаются в трех исполнениях: IP23, IP44. IP54. В машинах IP23 охлаждение осуществляется лопатками, отлитыми вместе с короткозамыкающими кольцами ротора, а в машинах IP44, IP54 — с помощью вентилятора.

Основные характеристики электродвигателей

Номинальный режим электродвигателя соответствует данным, указанным на его щитке (паспорте). В этом режиме двигатель должен удовлетворять требованиям, установленным ГОСТом.
Существует восемь различных режимов работы, из них основными можно считать:
продолжительный номинальный режим;
кратковременный номинальный режим с длительностью рабочего периода 10, 30 и 90 мин;
повторно-кратковременный номинальный режим с продолжительностью включения (ПВ) 15, 25,40, 60%, с продолжительностью одного цикла — не более 10 мин.
Номинальной мощностъю Рн электродвигателя называется указанная на щитке полезная механическая мощность на валу при номинальном режиме работы. Номинальная мощность выражается в Вт или кВт.
Номинальной частотой вращения n н вала электродвигателя называется указанное на щитке число оборотов в минуту, соответствующее номинальному режиму. Номинальный момент вращения — момент, развиваемый двигателем на валу при номинальной мощности и номинальной частоте вращения:

Номиналъной силой тока электродвигателя называется сила тока, соответствующая номинальному режиму. Действительное значение силы тока при номинальном режиме может отличаться от указанного на щитке электродвигателя в пределах установленных допусков для к.п.д. и коэффициента мощности.
Максималъный вращающий момент электродвигателя — наибольший вращающий момент, развиваемый при рабочем соединении обмоток и постепенном повышении момента сопротивления на валу сверх номинального при условии, что напряжение на зажимах двигателя и частота переменного тока остаются неизменными и равными номинальным значениям.
Начальный пусковой вращающий момент электродвигателя — момент вращения его при неподвижном роторе, номинальных значениях напряжения и частоты переменного тока и рабочем соединении обмоток.
Минимальным вращающим моментом электродвигателя в процессе пуска называется наименьший вращающий момент, развиваемый двигателем при рабочем соединении обмоток и частоте вращения в пределах от нуля до значения, соответствующего максимальному вращающему моменту (напряжение на зажимах двигателя и частота переменного тока должны оставаться неизменными и равными их номинальным значениям).
Номинальная частота вращения вала электродвигателя является следующим за мощностью параметром, от которого в значительной мере зависят конструктивное оформление, габариты, стоимость и экономичность работы электропривода. Наиболее приемлемыми в диапазоне мощностей от 0,6 до 100 кВт являются частоты вращения 3000, 1500 и 1000 об/мин (синхронные). Электродвигатели с частотой вращения 750 об/мин (восьмиполюсные) малых мощностей имеют низкие энергетические показатели.
При одинаковой мощности электродвигатели с более высокой частотой вращения имеют более высокие значения к.п.д. и cos φ , а также меньшие размеры и массу, что определяет их меньшую стоимость.
Сила тока холостого хода I в значительной мере определяется силой намагничивающего тока I P . приближенно можно считать I = I P . Для машин основного исполнения относительное значение силы тока холостого хода I = (0,2 — О,6)Iн (оно тем больше, чем меньше номинальная частота вращения и мощность электродвигателя). Зависимость тока холостого хода от частоты вращения электродвигателя приведена в табл.1.

Таблица 1. Токи холостого хода для двигателей основного исполнения

Если известны номинальный коэффициент мощности и кратность максимального момента m k ,то сила тока холостого хода при номинальном напряжении

где I — ток статора при номинальной нагрузке, А.
При номинальных напряжениях и частоты переменного тока сила тока холостого хода практически от изменения нагрузки не зависит. Определить из опыта I нетрудно, если электродвигатель не соединен с рабочей машиной. По значению I можно в известной мере судить о состоянии электродвигателя, в частности, после его ремонта.
К.п.д. электродвигателя при различной степени нагрузки


достаточной для практических расчетов точностью определяют по формуле

где коэффициент потерь, представляющих собой отношение постоянных потерь к переменным при номинальной нагрузке.
К постоянным потерям, практически не зависящим от нагрузки, относятся механические потери и потери в стали, к переменным — электрические потери в обмотках, зависящие от силы тока нагрузки, и добавочные потери — не учтенные ранее перечисленными видами потерь. Постоянные потери в значительной степени зависят от числа полюсов двигателя и его мощности.
Переменные потери при номинальной нагрузке определяют с помощью каталожных данных.

Таблица 2.Усредненное значение постоянных потерь мощности, рекомендуемое для практических расчетов

При наличии кривой к.п.д. в функции нагрузки касательная к этой кривой в начальной точке отсекает на горизонтали, проведенной на уровне ƞ +1, отрезок Р о, равный в масштабе абсцисс постоянным потерям (рис. 1). Коэффициент мощности cos φ существенно зависит от реактивной мощности, потребляемой из сети, и степени нагрузки двигателя. Реактивная мощность, потребляемая из сети,

где реактивная мощность, расходуемая на образование соответственно основного магнитного поля двигателя, полей рассеивания обмоток статора и ротора.

Основную часть реактивной мощности составляет мощность Q´ P , которая из-за наличия воздушного зазора значительно больше, чем в трансформаторах, и определяет относительно большое значение намагничивающего тока: I = (О,2-О,6) I Н— Обычно у трехфазных асинхронных электродвигателей при номинальной нагрузке cos φ = О,7-О,92. Большие значения коэффициента мощности относятся к мощным двигателям с числом полюсов 2р = 2 и 4. При уменьшении нагрузки cos φ 1 уменьшается до значения cos φ при холостом ходе. Средние значения cos φ и к.п.д. трехфазных электрqдвигателей даны в табл.3.

Таблица 3. Практические пределы значений к.п.д. и cos φ в трехфазных асинхронных двигателей основного исполнения

Скольжение при номинальной нагрузке трехфазных асинхронных электродвигателей основного исполнения обычно составляет от 1,5 до 6,6%. Большие значения скольжения относятся к меньшим значениям мощности двигателя (табл. 4.).

Таблица 2.2.4 Частота вращения ротора трехфазного асинхронного электродвигателя основного исполнения при номинальной нагрузке и стандартной частоте тона 50 Гц

Примечания. 1. В таблице приведены данные для двигателей мощностью от 1,1 до 100 кВт. 2. В серии А2 10-полюсные электродвигатели на синхронную частоту вращения 600 об/мин выпускаются с наименьшей мощностью 17 кВт. 3. Двигатели на 12 полюсов и более выполняют преимущественно мощностью выше 100 кВт. При номинальном значении напряжения и частоты переменного тока скольжение с изменением нагрузки в пределах от холостого хода до номинальной практически изменяется пропорционально нагрузке :

Читать еще:  Что такое aus двигатель

Электрический двигатель — принцип работы электродвигателя

Электрические двигатели предназначены для преобразования электрической энергии в механическую. Первые их прототипы были созданы в 19 веке, а сегодня эти устройства максимально интегрированы в жизнь современного человечества. Примеры их использования можно встретить в любой сфере жизнедеятельности: от общественного транспорта до домашней кофемолки.

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

Классификация электрических двигателей

Все электродвигатели между собой классифицируют в первую очередь по типу тока, протекающему через них. В свою очередь, каждая из этих групп тоже делить на несколько видов, в зависимости от технологических особенностей.
Двигатели постоянного тока

На маломощных двигателях постоянного тока магнитное поле создается постоянным магнитом, устанавливаемым в корпусе устройства, а обмотка якоря закрепляется на вращающемся валу. Принципиальная схема ДПТ выглядит следующим образом:

Обмотка, расположенная на сердечнике, изготавливается из ферромагнитных материалов и состоит из двух частей, последовательно соединенных между собой. Своими концами они подсоединяются к коллекторным пластинам, к которым прижимаются графитовые щетки. На одну из них подается положительный потенциал от источника постоянного тока, а на другую – отрицательный.

После подачи питания на двигатель происходит следующее:

  1. Ток от нижней «плюсовой» щетки подается на ту коллекторную пластину, к контактной платформе которой она подключена.
  2. Прохождение тока по обмотке на коллекторную пластину (обозначено пунктирной красной стрелкой), подключенную к верхней «отрицательной» щетке создает электромагнитное поле.
  3. Согласно правилу буравчика, в правой верхней части якоря возникает магнитное поле южного, а в левой нижней — северного магнитного полюса.
  4. Магнитные поля с одинаковым потенциалом отталкиваются друг от друга и приводят ротор во вращательное движение, обозначенное на схеме красной стрелкой.
  5. Устройство коллекторных пластин приводит к смене направления протекания тока по обмотке во время инерционного вращения, и рабочий цикл повторяется вновь.

При очевидной простоте конструкции существенным недостатком таких двигателей является низкий КПД, обусловленный большими потерями энергии. Сегодня ДПТ с постоянными магнитами используются в простых бытовых приборах и детских игрушках.

Устройство двигателей постоянного тока большой мощности, используемых в производственных целях, не предусматривает использование постоянных магнитов (они занимали бы слишком много места). В этих машинах используется следующая конструкция:

  • обмотка состоит из большего количества секций, представляющих собой металлический стержень;
  • каждая обмотка отдельно подключается к положительному и отрицательному полюсу;
  • количество контактных площадок на коллекторном устройстве соответствует количеству обмоток.

Таким образом, снижение потерь электроэнергии обеспечивается плавным подключением каждой обмотки к щеткам и источнику питания. На следующей картинке представлена конструкция якоря такого двигателя:

Устройство электрических двигателей постоянного тока позволяет легко обратить направление вращения ротора с помощью простой смены полярности на источнике питания.

Функциональные особенности электродвигателей определяются наличием некоторых «хитростей», к которым относится сдвиг токосъемных щеток и несколько схем подключения.

Сдвиг узла токосъемных щеток относительно вращения вала происходит после запуска двигателя и изменения подаваемой нагрузки. Это позволяет компенсировать «реакцию якоря» — эффект, снижающий эффективность машины за счет торможения вала.

Есть три способа подключения ДПТ:

  1. Схема с параллельным возбуждением предусматривает параллельное подключение независимой обмотки, как правило, регулируемой реостатом. Так обеспечивается максимальная стабильность скорости вращения и её плавная регулировка. Именно благодаря этому двигатели с параллельным возбуждением находят широкое применение в грузоподъемном оборудовании, на электрическом транспорте и станках.
  2. Схема с последовательным возбуждением тоже предусматривает использование дополнительной обмотки, но подключается она последовательно с основной. Это позволяет при необходимости резко увеличить крутящий момент двигателя, к примеру, на старте движения железнодорожного состава.
  3. Смешанная схема использует преимущества обоих способов подключения, описанных выше.

Двигатели переменного тока

Главным отличием этих двигателей от описанных ранее моделей заключается в токе, протекающем по их обмотке. Он описывает по синусоидальному закону и постоянно меняет свое направление. Соответственно и питание этих двигателей осуществляется от генераторов со знакопеременной величиной.

Одним из главных конструктивных отличий является устройство статора, представляющего собой магнитопровод со специальными пазами для расположения витков обмотки.

Двигатели переменного тока классифицируют по принципу работы на синхронные и асинхронные. Коротко говоря, это означает, что в первых частота вращения ротора совпадает с частотой вращения магнитного поля в статоре, а во вторых – нет.

Настоятельно рекомендуем прочитать нашу статью об устройстве электродвигателей переменного тока.

Синхронные двигатели

В основе работы синхронных электродвигателей переменного тока тоже лежит принцип взаимодействия полей, возникающих внутри устройства, однако в их конструкции постоянные магниты закрепляются на роторе, а по статору проводится обмотка. Принцип их действия демонстрирует следующая схема:

Проводники обмотки, по которой проходит ток, показанные на рисунке в виде рамки. Вращение ротора происходит следующим образом:

  1. На определенный момент времени ротор с закрепленным на нем постоянным магнитом находится в свободном вращении.
  2. На обмотке в момент прохождения через нее положительной полуволны формируется магнитное поле с диаметрально противоположными полюсами Sст и Nст. Оно показано на левой части приведенной схемы.
  3. Одноименные полюса постоянного магнита и магнитного поля статора отталкиваются друг от друга и приводят двигатель в положение, показанное на правой части схемы.
Читать еще:  Двигатель d4d характеристика двигателя

В реальных условиях для создания постоянного плавного вращения двигателя используется не одна катушка обмотки, а несколько. Они поочередно пропускают через себя ток, благодаря чему создается вращающееся магнитное поле.

Асинхронные двигатели

А асинхронном двигателе переменного тока вращающееся магнитное поле создается тремя (для сети 380 В) обмотками статора. Их подключение к источнику питания осуществляется через клеммную коробку, а охлаждение — вмонтированным в двигатель вентилятором.

Ротор, собранный из нескольких замкнутых между собой металлических стержней, жестко соединен с валом, составляя с ним одно целое. Именно из-за соединения стержней межу собой этот тип ротора называется короткозамкнутым. Благодаря отсутствию токопроводящих щеток в данной конструкции значительно упрощается техническое обслуживание двигателя, увеличивается срок службы и надежность. Главной причиной выхода из строя двигателей этого типа является износ подшипников вала.

Принцип работы асинхронного двигателя основывается на законе электромагнитной индукции – если частота вращения электромагнитного поля обмоток статора превышает частоту вращения ротора, в нем наводится электродвижущая сила. Это важно, поскольку при одинаковой частоте ЭДС не возникает и, соответственно, не возникает вращения. В действительности нагрузка на вал и сопротивление от трения подшипников всегда замедляет ротор и создает достаточные для работы условия.

Главным недостатком двигателей данного типа является невозможность получения постоянной частоты вращения вала. Дело в том, что рабочие характеристики устройства изменяются в зависимости от различных факторов. К примеру, без нагрузки на вал циркулярная пила вращается с максимальной скоростью. Когда мы подводим к пильному полотну доску и начинаем её резать, частота вращения диска заметно снижается. Соответственно, снижается и скорость вращения ротора относительно электромагнитного поля, что приводит к наведению еще большей ЭДС. Это увеличивает потребляемый ток и рабочая мощность мотора увеличивается до максимальной.

Важно подбирать двигатель подходящей мощности – слишком низкая приведет к повреждению короткозамкнутого ротора из-за превышения расчетного максимума ЭДС, а слишком высокая приводит к необоснованным энергозатратам.

Асинхронные двигатели переменного тока рассчитаны на работу от трехфазной электрической сети, однако могут быть подключены и в однофазную сеть. Так, например, они используются в стиральных машинах и станках для домашних мастерских. Однофазный двигатель имеет примерно на 30% более низкую мощность, по сравнению с трехфазным – от 5 до 10 кВт.

Ввиду простоты исполнения и надежности асинхронные двигатели переменного тока наиболее распространены не только в производственном оборудовании, но и в бытовой технике.

Универсальные коллекторные двигатели

Во многих бытовых электроприборах необходимо наличие высокой скорости вращения двигателя и крутящего момента при малых пусковых токах и плавной регулировке. Всем этим требования удовлетворяют коллекторные двигатели, называемые универсальными. По своему устройству они очень похожи на двигатели постоянного тока с последовательным возбуждением.

Главным отличием от ДПТ является магнитная система, комплектуемая несколькими изолированными друг от друга листами электротехнической стали, к полюсам которых подсоединены по две секции обмотки. Такая конструкция снижает нагрев элементов токами Фуко и перемагничивание.

Высокая синхронность магнитных полей в универсальных коллекторных двигателях сохраняет высокую скорость вращения даже под большой нагрузкой на вал. Поэтому их используют в маломощном быстроходном оборудовании и домашней технике. При подключении в цепь регулируемого трансформатора появляется возможность плавной настройки частоты вращения.

Главный недостаток таких электромоторов заключается в низком моторесурсе, обусловленном быстрым стиранием графитовых щеток.

Электродвигатели: характеристика, описание, классификация. Основные виды электрических двигателей

Базовыми конструктивными элементами каждого электродвигателя являются статор (в двигателях постоянного напряжения — индуктор), являющийся неподвижным, и ротор (в двигателях постоянного напряжения — якорь), который вращается. Воздействие на обмотки первого электрическим током приводит к генерированию вращающегося поля электромагнитной природы. В свою очередь, поле провоцирует возникновение индукционного тока на обмотке ротора, благодаря которому тот начинает вращаться. Таким образом, электродвигатель подтверждает истинность закона Ампера: в электромагнитном поле на находящийся под напряжением проводник воздействует электродвижущая сила (ЭДС).

Электродвигатели классифицируются по множеству разных принципов. К примеру, по частоте вращения ротора (якоря). Эта характеристика находится в зависимости от количества пар магнитных полюсов. Также на нее влияет частота, которую имеет напряжение в электрической сети, питающей электродвигатель. Другими критериями для классификации служат различные отличия в принципе действия и конструкции. Например, по принципу появления момента вращения электродвигатели бывают двух видов:

  • Гистерезисные — к возникновению вращающего момента приводит гистерезис (свойство физической системы, возникающие, когда перемагничивается ротор). Такие устройства встречаются довольно редко.
  • Электромагнитные — основная разновидность электродвигателей для быта и производственных нужд. Эта большая группа устройств имеет собственную классификацию. Например, они отличаются типом питающей электросети:
  • Электродвигатели постоянного тока — питаются от электросети, напряжение в которой постоянно. Их подразделяют на оснащенные щеточно-коллекторным узлом и не оснащенные им. Причем первые могут иметь еще и различный тип возбуждения: независимый или самостоятельный. Обмотка у электродвигателя постоянного тока бывает последовательной, смешанной, параллельной.
  • Электрический двигатель переменного тока запитывается от сети с переменным напряжением. Они тоже бывают разных видов. Виды электродвигателей этого типа немногочисленны. Их всего два:
  • Синхронные электродвигатели отличаются тем, что в них ротор вращается синхронно с электромагнитным полем статора. Частота их вращения также одинакова. Для этого вида устройств характерна очень большая мощность.
  • Асинхронные электродвигатели устроены так, что вращение электромагнитного поля статора не синхронизировано с частотой вращения ротора. Внутри этой очень распространенной группы устройств также есть свои отличия. Исходя из типа обмотки они могут быть короткозамкнутыми или фазовыми. А по типу электропитания — однофазными либо трехфазными.

На современном рынке электрооборудования самыми распрастраненными являются именно двигатели асинхронные.
Асинхронный двигатель можно назвать основной разновидностью электродвигателей, используемой для нужд частных лиц и предприятий. Номинальная величина мощности такого устройства связана с частотой вращения магнитного поля. Та, в свою очередь, зависит от количества полюсных пар обмотки, запитанной от однофазной или трехфазной электросети с переменным напряжением, частота которого 50 Гц. Часто встречаются модели с одной, двумя и тремя парами полюсов. Но изредка встречаются и с четырьмя.
Среди преимуществ, которыми обладают электродвигатели асинхронные стоит отметить простоту конструкции. В ней практически нет мелких и хрупких частей, а цепь ротора не имеет коммутаторов механического типа. Благодаря данным особенностям асинхронные электродвигатели очень надежны и имеют приличный срок службы (разумеется, при условии качественной сборки и применения в производстве всех комплектующих материалов высокого качества). Простая и практичная конструкция в сочетании с несложностью производства привели к тому, что на подобный электродвигатель цена всегда остается доступной. Более того, как показала практика на протяжении многих десятилетий, двигатель переменного тока асинхронного типа отличается экономичностью и простотой в эксплуатации. Для того, чтобы приобрести подходящее для конкретных задач устройство, достаточно взять каталог электродвигателей от надежного поставщика, и подобрать модель с нужными параметрами.

Ссылка на основную публикацию
Adblock
detector