Характеристики компрессоров авиационных двигателей

Газотурбинный двигатель. Фото. Строение. Характеристики.

Авиационные газотурбинные двигатели.

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Принцип работы газотурбинного двигателя.

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после — в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  • выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

Двигатель, изображенный на схеме выше, является турбореактивным. Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс».

Газотурбинные двигатели имеют классификацию также по другим при знакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  • по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя — одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Читать еще:  Что случиться если не прогревать двигатель

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

Газотурбинный двигатель. Видео.

КОМПРЕССОР

НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ
ЦЕНТРОБЕЖНОГО КОМПРЕССОРА

Компрессор газотурбинного двигателя предназначен для сжатия воздуха и подачи его в камеру сгорания. Сжатие воздуха необходимо для более полного преоб­разования подводимого в камеру сгорания тепла в ки­нетическую энергию газового потока. Это наглядно вид­но из формулы, выражающей зависимость термическо­го коэффициента полезного действия двигателя (щ) от степени повышения давления компрессора

где лк — степень повышения давления в компрессоре; к — показатель адиабаты.

Анализ формулы показывает, что при отсутствии сжатия (лк=1) термический КПД равен нулю и, сле­довательно, введенное в двигатель тепло в результате сгорания топлива не идет на увеличение кинетической энергии газа. С увеличением степени повышения дав­ления повышается термический КПД, возрастает эф­фективность использования подводимого в двигатель тепла. Поэтому одним из основных требований, предъ­являемых к компрессорам, наряду с требованиями обес­печения надежной и устойчивой работы на всех эксплуа­тационных* режимах, предъявляются требования обес­печить возможность получения больших степеней сжа­тия при малой массе и габаритах.

Возможность удовлетворения этих требований в зна­чительной степени определяется конструкцией компрес­сора. По конструкции компрессоры современных авиационных двигателей разделяются на два типа: центробежные и осевые.

Центробежные компрессоры имеют целый ряд пре­имуществ перед осевыми: простота конструкции и ма­лая трудоемкость в изготовлении, удовлетворительная характеристика при переменных режимах работы, воз­можность получения больших степеней повышения дав­ления в одной ступени (яСт = 3…6).

Основные недостатки центробежных компрессоров по сравнению с осевыми — меньший КПД, небольшая пропускная способность и большие габаритные разме­ры в поперечном направлении.

Осевые компрессоры имеют более высокий коэффи­циент полезного действия, большую пропускную способ­ность, выполняются многоступенчатыми, а потому име­ют более высокую степень повышения давления и, сле­довательно, более высокий КПД, однако они более сложны и дороги в изготовлении, менее устойчивы в газодинамическом отношении и менее надежны в экс­плуатации.

Высокая надежность, простота конструкции и боль­шая газодинамическая устойчивость предопределили использование на двигателе М701 центробежного ком­прессора.

Центробежный компрессор (рис. 85) состоит из ро­тора и статора. Лопатки вращающегося направляюще­го аппарата (воздухозаборника) совместно с лопатками рабочего колеса образуют межлопаточные каналы и вместе с корпусом — проточную часть компрессора.

Рабочее колесо с вращающимся направляющим ап­паратом (ВНА) и валом образуют ротор компрессора, а корпус компрессора с диффузором — его статор. Вра­щающийся направляющий аппарат — это спрофилиро­ванный лопаточный венец, обеспечивающий безударный вход воздуха на лопатки рабочего колеса.

На входе во ВНА величина и направление относи­тельной скорости W определяются величинами абсо­лютной скорости С и изменяющейся по высоте лопаток окружной скорости U (рис. 86).

Для обеспечения безударного входа углы загиба ло­паток ВНА делают близкими к углам направле­ния относительной скорости Wi. Поскольку направле­ние относительной скорости меняется по высоте лопат­ки, углы загиба лопаток ВНА также изменяются про­порционально высоте лопатки, увеличиваясь от втулки к периферии.

Рис. 85. Про­дольный раз­рез компрессо­ра двигателя М70ІС-500:

1—входной кор­пус компрессо­ра; 2—передняя стенка компрес­сора; 3—перед­нее опорное кольцо лопаточ­ного диффузо­ра; 4 — фланец отбора воздуха для охлажде­ния узла тур­бины; 5—заднее опорное кольцо лопаточного диффузора; 6— крыльчатка компрессора;

7 — передний вал; 8 — основ­ной вал ротора; 9 — силовой ко­нус; 10—задний корпус компрес­сора; 11 — гор­ловина заднего корпуса ком­прессора; 12— нижний узел крепления дви­гателя; 13—ло­патка диффузо­ра; 14—штифт; 15 — передний подшипник с корпусом пе­реднего уплот­нения; 16—вра­щающийся на­правляющий ап­парат крыль­чатки компрес­сора

В межлопаточных каналах происходит поворот воз­душного потока, вращающийся направляющий аппарат вовлекает воздушный поток во вращение, закручивает его и сообщает ему кинетическую энергию вращатель­ного движения.

Рис. 86. Треугольник ско-
ростей воздуха на входе В;
колесо центробежного ком-
прессора

В межлопаточных каналах колеса центро­бежного компрессора.: поток воздуха, посту — ^ лающий из ВНА, дви­жется в направлении от центра к периферии с непрерывным возра­станием окружной ско­рости. На двигателе М701 окружная ско­рость колеса компрес­сора меняется от 130 м/с у втулки до 450 м/с на периферии (на максимальном режиме работы дви­гателя). Вращение потока вызывает появление центро­бежных сил, повышающих давление воздуха. Таким образом, из колеса выходит закрученный воздушный поток с большой скоростью, т. е. обладающий большой кинетической энергией.

Из колеса воздушный поток поступает в диффузор, в котором полученная кинетическая энергия превраща­ется в работу сжатия. Поэтому на выходе из диффу­зора скорость воздуха уменьшается, а давление и тем­пература увеличиваются.

Процесс сжатия воздуха в компрессоре происходит с определенными потерями. Так, вследствие вязкости воздуха при вращении колеса происходит трение возду­ха, окружающего колесо, и воздуха, движущегося по межлопаточным каналам, о стенки колеса. Это трение создает дополнительный момент сопротивления враще­нию колеса и требует на его преодоление затрат допол­нительной работы, которая входит составной частью в работу, затрачиваемую на вращение компрессора. Ос­новную часть потерь вызывает трение торцевых повен ч — ностей лопаток колеса и воздуха, движущегося по э:» му колесу, о воздух, находящийся в осевых зазорах между колесом и корпусом компрессора.

Кроме трения воздуха, увлеченного во вращение ло­патками колеса, о стенки корпуса значительное влия­ние на величину потерь оказывает перетекание воздуха по зазорам между торцами лопаток и стенкой корпуса. Это приводит к возникновению дополнительных гидрав­лических потерь. Перетекание воздуха обусловливается наличием разности давлений с обеих сторон лопатки колеса, которая, в свою очередь, является следствием радиального относительного движения воздуха в коле­се и абсолютного движения по спирали с возрастающей окружной скоростью, вызывающих появление сил, дей­ствующих перпендикулярно относительной скорости в сторону, обратную направлению движения. Действие этих сил создает перепад давления по обе стороны ло­паток, что является источником возникновения момен­та сопротивления, на преодоление которого необходимо затратить работу. Поскольку величина зазора между лопатками колеса компрессора и корпусом существенно влияет на величину потерь, а следовательно, и на коэф­фициент полезного действия компрессора, этот зазор конструктивно стараются сделать минимальным.

Читать еще:  Шум при запуске двигателя на холодную ваз 2114

ОДК изготовит детали из композитов для двигателя Sukhoi Superjet 100

Объединенная двигателестроительная корпорация (ОДК) планирует использовать детали из полимерных композитов (ПКМ) в составе российско-французского двигателя SaM146, которым оснащаются авиалайнеры Sukhoi Superjet 100. В настоящее время «ОДК – Сатурн» проводит испытания опытных образцов композитных деталей в составе SaM146.

SaM146 – интегрированная силовая установка, включающая двигатель и мотогондолу с реверсивным устройством. Поставки SaM146 и все услуги по послепродажному обслуживанию осуществляет компания PowerJet – совместное предприятие французской Safran Aircraft Engines и «ОДК – Сатурн».

Рыбинское предприятие отвечает за разработку и производство вентилятора и компрессора низкого давления, турбины низкого давления, общую сборку двигателя SaM146 и его испытания, а Safran Aircraft Engines – за компрессор высокого давления, камеру сгорания, турбину высокого давления, коробку агрегатов, САУ и интеграцию силовой установки.

Мы активно работаем над созданием и внедрением деталей из полимерных композиционных материалов в состав авиадвигателей. Это позволяет существенно улучшить основные характеристики изделия

ДМИТРИЙ КАРЕЛИН, зам ген конструктора «ОДК – Сатурн»

«ОДК – Сатурн» работает над улучшением ресурсных и технических характеристик двигателя. Одно из направлений – замена существующих металлических деталей двигателя на конструкции из полимерных композиционных материалов. Они состоят из пластичной основы (матрицы) и армирующих наполнителей, обладающих высокой жесткостью и прочностью.

«Мы активно работаем над созданием и внедрением деталей из полимерных композиционных материалов в состав авиационных двигателей, поскольку это позволяет существенно улучшить основные характеристики изделия», – говорит заместитель генерального конструктора «ОДК – Сатурн» по научно-исследовательской работе Дмитрий Карелин.

В частности, одной из задач является снижение веса двигателя SaM146 и других газотурбинных двигателей, выпускаемых предприятиями ОДК. Целевыми показателями при этом являются снижение массы детали на 20-40% и стоимости изготовления на 10-50%, пояснил Дмитрий Карелин.

В настоящее время первые опытные образцы, произведенные на «ОДК – Сатурн», уже проходят комплекс испытаний в составе двигателя SaM146. Разработанные технологии будут внедрены и в другие силовые установки ОДК.

Ключевые технологические направления, по которым ведется освоение данной технологии, – это ПКМ для статорных деталей на основе термопластичной матрицы и ПКМ для нагруженных деталей двигателя с 3D-тканой армирующей структурой.

«Анализ мировых тенденций показал, что зарубежные компании-лидеры уже осуществляют переход от традиционных слоистых полимерных композитов к материалам нового поколения, – рассказывает Дмитрий Карелин. – Это связано с повышением надежности деталей из новых материалов в сравнении со слоистыми ПКМ».

Как он отмечает, простое повторение опыта мировых компаний не позволит осуществить технологический скачок и, тем более, опередить их. Поэтому необходимо рассматривать новые современные технологии, имеющие максимальные перспективы применения.

«Серьезный прорыв можно осуществить с началом промышленного освоения и эксплуатации деталей из термопластичных ПКМ. Использование данных материалов позволяет проводить повторный расплав-отверждение, а, значит, существенно расширяет технологические возможности создания деталей из ПКМ, делает возможным использование технологий сварки, штамповки, литья, гибридных технологий формования, позволяет ремонтировать детали в условиях эксплуатации при появлении повреждений», – отметил Дмитрий Карелин.

Технология создания сложных пространственно-армирующих структур из непрерывного углеволокна, которую также осваивают в «ОДК – Сатурн», позволяет управлять и контролировать распределение механических свойств внутри детали за счет 3D-армирования. Это делает возможным справиться с самым главным недостатком традиционных ПКМ – склонность к межслойному расслоению.

События, связанные с этим

«Сокол» защитит военные аэродромы

Ростех и ОАК заключили соглашение о сотрудничестве

Авиация России

Гражданская авиация, пассажирские и боевые самолеты и вертолеты России, новости и история российской и советской авиации.

ТВ7-117СТ – турбовинтовой двигатель со свободной турбиной

В начале 1982 года ОКБ им. Ильюшина в инициативном порядке приступило к проектированию нового пассажирского ближнемагистрального самолёта Ил-114. Самолёт должен был заменить на местных воздушных линиях Ан-24, а на некоторых региональных направлениях — турбореактивные Ту-134 и Як-40. Новый самолёт требовал новый двигатель — современный, мощный и экономичный. Разработка такого двигателя велась в ленинградском ОКБ им. Климова.

Турбовинтовые двигатели по конструкции делятся на двухвальные или со свободной турбиной и одновальные. В первом случае между газогенератором и трансмиссией не существует механической связи, привод между турбиной компрессора и свободной турбиной только газодинамический. От свободной турбины идёт отдельный вал, который через редуктор передаёт вращательный момент на винт. Во втором случае, как видно из названия, турбина с компрессором и винт расположены на одном валу.

Применение свободной турбины имеет ряд преимуществ, в том числе и возможность работы силового агрегата самолёта на земле в качестве вспомогательной силовой установки — без вращения воздушного винта, при этом работающий газогенератор обеспечивает самолёт электрическим током и воздухом высокого давления для бортовых систем.

Конструктивные особенности семейства ТВД ТВ7-117СТ

    • одновальный осецентробежный компрессор, состоящий из пяти осевых и одной центробежной ступени;
    • входной направляющий аппарат и направляющие аппараты первых двух ступеней — регулируемые;
    • кольцевая противоточная камера сгорания;
    • 2-х ступенчатая осевая турбина компрессора с четырьмя охлаждаемыми венцами;
    • 2-х ступенчатая осевая свободная турбина;
    • вал отбора мощности с выводами вперед;
    • соосный редуктор винта, расположенный непосредственно перед компрессором.

Применение осецентробежного компрессора, в котором соединены аэродинамические преимущества осевых ступеней, имеющих высокий КПД, и центробежных, расширяющих диапазон устойчивой работы, является наилучшим решением для малоразмерных газотурбинных двигателей с высокими параметрами термодинамического цикла. Кольцевая противоточная камера сгорания, которая расположена вокруг узла турбины, позволила уменьшить длину двигателя, получить хорошие эмиссионные характеристики и низкий уровень дымления.

В семействе двигателей ТВ7-117 узел турбины представляет собой результат компромиссов, причиной которых является, в частности, малый размер турбинных лопаток. «Представьте, что рабочая лопатка первой ступени турбины ТВ7-117 чуть больше ногтя большого пальца. Вращаясь с огромной скоростью, такая деталь должна тысячи часов работать при температуре окружающих газов в полторы тысячи градусов!. Само по себе это уже технологическое чудо. Тем не менее, это чудо в российском двигателе реализовано и является огромным достижением отечественного двигателестроения», — рассказал кандидат технических наук, математик, в 90-х годах начальник двигательного сектора ЦИАМ Андрей Злобин.

Читать еще:  Электросхема датчика температуры двигателя

Унифицированный газогенератор, созданный в «ОДК-Климов», может применяться в двигателях как гражданских, так и военных самолётов и вертолётов. На его базе были разработаны

    • ТВ7-117СТ для лёгкого военно-транспортного самолёта Ил-112В,
    • ТВ7-117СТ-01 — гражданская модификация для пассажирского самолёта Ил-114-300
    • и турбовальный ТВ7-117В для вертолёта Ми-38.
Основные характеристики воздушного винта АВ 112-114
Режим работы Тяга, кгс Мощность, л.с.
Взлётный V=0 3710 2800
Взлётный V=200 км/час 2660 2800
Крейсерский V=550 км/час 810 1900
Реверс тяги V=200 км/час -2200 400
Габаритные размеры
Диаметр винта, м 3,9
Масса винта, кг 190

Все двигатели семейства имеют модульную конструкцию, которая включает редуктор, верхнюю и нижнюю коробки приводов, центральный привод, осевой компрессор, турбокомпрессор, свободную турбину и выходное устройство. Замена модулей может производиться непосредственно в условиях эксплуатации, что значительно снижает материальные и временные затраты на сервисное обслуживание и ремонт. В соответствии со второй стратегией управления ресурсами (СУР2) двигатель может эксплуатироваться без обязательной отправки в ремонт после достижения назначенного ресурса, и остаётся на крыле до исчерпания минимальной циклической наработки одной из основных деталей. Эксплуатация может быть продолжена после замены исчерпавшей свой ресурс детали или модуля, в который входит деталь.

Модернизированная силовая установка для Ил-114-300 включает форсированный турбовинтовой двигатель ТВ7-117СТ-01, воздушный винт АВ-112-114 с регулятором винта РСВ-34С-114, систему автоматического управления типа FADEC (САУ) БАРК-65СТМ и агрегаты топливной системы НР-65СМ, НП-65, АЗРТ-65.

Лопасти воздушного винта разработаны в ПАО «НПП «Аэросила», изготавливаются из современных полимерных композиционных материалов и оборудованы электротепловой противообледенительной защитой. Конструкция крепления лопастей позволяет производить их замену непосредственно в эксплуатации.

Повышенных показателей по мощности и другим основным параметрам конструкторам «ОДК-Климов» удалось достичь за счёт применения новых материалов и совершенствования конструкции. БАРК-65СТМ контролирует работу не только двигателя, но и воздушного винта, улучшает тем самым эксплуатационные характеристики ТВ7-117СТ-01 и обеспечивает его оптимальный режимы работы на взлёте, посадке и в крейсерском полёте. Такое совместное управление позволяет полностью использовать потенциал силовой установки и повысить её эффективность, обеспечивая в итоге самолёту конкурентные технические характеристики.

Характеристики двигателя ТВ7-117СТ/СТ-01*
Наименование ТХ ТВ7-117СТ ТВ7-117СТ-01
Чрезвычайный режим, мощность, л.с. 3600
Взлётный режим
мощность, л.с. 2900 3100
уд. расход топлива, г/л.с. час 200
Крейсерский режим
мощность, л.с. 2000
уд. расход топлива, (Н=6 км, V=500 км/час, МСА) г/л.с. час 175
Габаритные размеры, мм
длина 2151
максимальный диаметр 886 950
Сухая масса, кг 499 510
Удельная масса, M/Nвзл. кг/л.с. 0,160
Ресурс межремонтный, ч (циклов)** 3875 (2500)
Ресурс назначенный, ч (циклов)** 7750 (5000)
* По данным ОДК
** При эксплуатации по СУР2

Основанием для выполнения опытно-конструкторских работ по двигателю стали:

    • Поручение Президента Российской Федерации от 3 ноября 2015 г. № Пр-2291;
    • Приказ № 106 от 28 июня 2016 г. ПАО «ОАК» «О запуске программы создания регионального самолёта на базе самолёта Ил-114-300»;
    • ТЗ на ОКР «Модернизация пассажирского самолёта Ил-114-300 с двумя двигателями ТВ7-117СМ/СТ»;
    • ТЗ на составную часть ОКР «Разработка турбовинтового двигателя со свободной турбиной ТВ7-117СТ-01 для самолёта Ил-114-300».

Финансирование разработки и производства ТВ7-117СТ-01 осуществляется за счёт собственных средств АО «ОДК-Климов» и средств государственной программы «Развитие авиационной промышленности на 2013-2025 годы», утверждённой распоряжением Правительства Российской Федерации №2509-р от 24 декабря 2012 года.

В 2017 году для сокращения издержек производства Департамент Минобороны по обеспечению ГОЗ и Департамент авиационной промышленности Минпромторга согласовали предложение ОАК и ОДК об унификации силовых установок самолётов Ил-114-300 и Ил-112В. Так как изначально двигатель ТВ7-117СТ с воздушным винтом АВ-112 разрабатывался в интересах Минобороны, был оформлен единый директивный план-график работ по созданию, сертификации и поставке по Общим техническим требованиям ВВС двигателя ТВ7-117СТ для самолёта Ил-112В и гражданской версии — ТВ7-117СТ-01 по Авиационным правилам для самолётов Ил-114-300.

Стендовые испытания ТВ7-117СТ-01 на модернизированном испытательном стенде «ОДК-Климов» начались в сентябре 2016 г. Лётным испытаниям двигателя предшествовал комплекс работ, выполненных в «Климове» и нацеленных на исключение опасных отказов. ЦИАМ провёл экспертизу результатов этих работ и выдал рекомендации и требования по безопасному выполнению испытательных полётов.

На летающей лаборатории Ил-76ЛЛ на базе ЛИИ им. М.М. Громова в Жуковском двигатель прошёл четыре этапа испытаний. На первом, начавшемся в сентябре 2017 года, было выполнено около 20 полётов. В конце 2018 года прошли испытания второго этапа с шестью контрольными полётами. В декабре 2019-го завершился третий этап лётных испытаний.

Основной задачей третьего этапа была проверка работоспособности воздушного винта АВ-112-114 и других узлов. Кроме того, в ходе наземных гонок и полётов было проверено функционирование новых агрегатов системы управления и программно-математическое обеспечение САУ БАРК-65СТМ. Было выполнено девять испытательных полётов и четырнадцать наземных гонок.

В октябре 2019 года ТВ7-117СТ-01 прошёл макетную комиссию – обязательный этап сертификации. Макетная комиссия оценила соответствие конструкции и характеристик представленного образца требованиям сертификационного базиса. Также комиссия оценила полноту учёта требований к лётной годности и охране окружающей среды и признала этап макета выполненным.

Программу сертификационных испытаний двигателя на соответствие нормам авиационных правил (АП-33) с выдачей сертификата типа планировалось завершить в 2020 году. Однако форс-мажорные обстоятельства из-за пандемии коронавируса не позволили уложиться в установленные сроки. В августе 2020 года по итогам завершившихся испытаний СУ на Ил-76ЛЛ было подтверждено соответствие характеристик двигателя установленным требованиям, синхронизированы графики испытаний, сертификации, производства как двигателей, так и самолётов Ил-112В и Ил-114-300.

Ссылка на основную публикацию
Adblock
detector