Характеристики синхронного реактивного двигателя

Характеристики синхронного реактивного двигателя

Синхронными реактивными микродвигателями (СРМД) называются двигатели, вращающий момент в которых создается только НС статора за счет разной магнитной проводимости по продольной и поперечной осям машины. Различие проводимостей по осям d и q осуществляется либо конструкцией ротора благодаря выступам и впадинам (рис. 3.6,а), либо выполнением его из разных материалов, например из алюминия 1 и стали 2 (рис. 3.6,б).

Рис. 3.6. Роторы синхронных реактивных микродвигателей

Принцип действия СРМД в синхронном режиме рассмотрим на следующей модели (рис. 3.7). Представим вращающееся магнитное поле статора П-образным постоянным магнитом, внутри которого находится невозбужденный явнополюсный ротор. При совпадении оси постоянных магнитов с продольной осью ротора силовые линии поля проходят через зазор радиально, т.е. не деформируясь (рис. 3.7,а). В этом случае q = 0, МР = 0.

Рис. 3.7. К вопросу о принципе действия СРМД

Если вращающийся ротор чуть притормозить, между осями образуется угол q, линии поля, проходя через зазор, деформируются (их можно уподобить резиновым жгутам), возникают силы магнитного натяжения, тангенциальные составляющие которых развивают реактивный момент и увлекают ротор за полем статора (рис.3.7,б). Формулу реактивного момента при r1 = 0 получим из (3.2), положив в ней Е = 0.

(3.3)

Исходя из принципа действия и формулы (3.3) можно предположить, что чем больше разница между xd и xq, тем лучше свойства машины. Однако это не так. Дело в том, что с увеличением разности xd и xq увеличивается средний воздушный зазор, что приводит к увеличению намагничивающего тока, тока статора, падения напряжения в обмотке статора и, как следствие, к уменьшению магнитного потока в асинхронном режиме. При этом уменьшается пусковой (при s = 1) и подсинхронный (при s @ 0) моменты.

Исследования показали, что для ротора рис. 3.6,а оптимальными размерами будут: отношение полюсной дуги к полюсному делению 0,5 ¸ 0,6;dmax/dmin = 10 ¸12. И даже такие двигатели имеют невысокие энергетические показатели: КПД = 5 ¸ 50 %; сosj = 0,2 ¸ 0,5; Mп/Mном = 1 ¸1,5; Mвх/Mном = 1 ¸1,5; Mmax/Mном = 1,2 ¸ 2,2.

В последнее время большое признание получили двигатели с ротором типа рис. 3.6,в, которые имеют значительную разность хdи хqпри относительно небольшом среднем воздушном зазоре. Благодаря такой конструкции, характеристики СРМД улучшаются в среднем на 30 ¸ 40 % по сравнению с ротором явнополюсной конструкции (рис.3.6,а).

В целом СРМД развивают полезную мощность в 2 ¸ 3 раза меньшую, чем асинхронные двигатели таких же габаритов. Во многом это объясняется тем, что в создании момента участвует только одна половина машины (статор), а не две (статор и ротор), как во всех других двигателях.

Векторную диаграмму синхронного реактивного микродвигателя можно построить, используя уравнение напряжения синхронного явнополюсного двигателя, приняв Е=0 (рис. 3.8).

На рис. 3.8 пунктиром показан вектор напряжения при r1 = 0. Видно, что с учетом r1 угол q уменьшается. Это дает основания утверждать, что активное сопротивление статора смещает угловую характеристику в сторону меньших углов. Кроме того, из-за потерь в обмотке статора уменьшается полезный момент, что смещает эту характеристику еще и вниз (рис. 3.9).

В порядке иллюстрации можно привести формулу электромагнитного момента реактивного двигателя с учетом активного сопротивления статора [1]

В результате смещения угловой характеристики влево максимальный момент реактивного двигателя наступает при углах порядка 25 о .

Особенности пусковой характеристики СРМД. В двигателях с ротором рис. 3.6,а пусковая обмотка несимметричная либо по причине отсутствия стержней в междуполюсном пространстве, либо по причине разных индуктивных сопротивлений стержней, лежащих в полюсных наконечниках и вне их.

В этом случае поле, созданное короткозамкнутой обмоткой ротора, становится эллиптическим, т.е. состоящим из прямо и обратновращающихся составляющих.

Прямое поле ротора вращается относительно статора с синхронной частотой nпр = n1 и, взаимодействуя с его полем, создает обычный асинхронный момент (Ма). Обратное поле ротора вращается относительно статора с частотой nобр = n1(1-2s), поэтому его действие зависит от скольжения s.

Рис. 3.10. Пусковая характеристика СРМД с несимметричной пусковой обмоткой

Пока скольжение изменяется от 1 до 0,5 это поле помогает разгонять ротор. Когда же скольжение станет меньше 0,5, это поле будет создавать тормозной момент (Ма2), препятствующий разгону двигателя. В результате в пусковой характеристике появится провал, могущий привести к застреванию двигателя на скорости, примерно равной половине синхронной (рис. 3.10).

§ 3.4. Вход в синхронизм

Процесс входа в синхронизм является сложным и ответственным моментом в работе синхронных микродвигателей. Ротор, достигший подсинхронной скорости, должен за счет взаимодействия полей статора и ротора (в двигателе с постоянными магнитами) или упругих свойств линий поля (в синхронном реактивном двигателе) скачком втянуться в синхронизм. Поэтому входной момент в сильной степени зависит от момента инерции ротора и момента нагрузки. Рассмотрим процесс входа в синхронизм на примере двигателя с постоянными магнитами [2].

Двигатель войдет в синхронизм, если работа, совершаемая синхронным моментом, будет больше или равна сумме прироста кинетической энергии ротора и работы преодоления сопротивления нагрузки:

(3.4)

Зависимость синхронного момента от угла q с учетом r1 носит сложный характер (3.2′). Примем ее синусоидальной:

Изменение кинетической энергии ротора

где: J — момент инерции ротора; sвх — скольжение, при котором двигатель входит в синхронизм.

Если принять пусковую характеристику двигателя на участке s = 0 — sном линейной, работу по преодолению сопротивления нагрузки найдем по формуле

(3.5)

где tвх — продолжительность входа в синхронизм. Ее найдем из закона сохранения момента количества движения.

Приняв , получим

Подставляя это значение в формулу (3.5), находим

Неравенство (3.4) принимает вид

(3.6)

Соотношение (3.6) определяет при заданных Мm и Мном скольжение асинхронного режима, при котором возможен вход двигателя в синхронизм.

Синхронные реактивные двигатели (СРД)

Введение

Появление электрического двигателя во многом способствовало развитию промышленности и улучшению качества жизни населения. В рамках второй промышленной революции произошла популяризация всех видов электрических машин, и теперь для многих создается впечатление, что эти устройства всегда находились на службе у человечества. На сегодняшний день известно множество разновидностей электрических двигателей, от широко известных двигателей постоянного тока (ДПТ), асинхронных двигателей (АД), синхронных двигателей (СД) до шаговых двигателей (ШД). Несмотря на глобальные различные, все они выполняют одну функцию – являются электромеханическими преобразователями, то есть конвертируют электрическую энергию в механическую.

Читать еще:  Эфир для запуска двигателя инжектор

А теперь представьте себе электрический двигатель с максимально простой конструкцией ротора. Это сделать довольно-таки сложно из-за сложившихся стереотипов о функционировании электрической машины, но именно так можно вкратце описать набирающие популярность Синхронные Реактивные Двигатели (с англ. Synchronous Reluctance Machine, СРД). В последнее время на эти электрические машины все больше обращают внимание производители двигателей, а также инжиниринговые компании по всему миру, и не случайно. Давайте разберемся, что же из себя представляют СРД.

Синхронный Реактивный Электродвигатель – синхронная машина, вращающий момент которой обусловлен неравенством магнитных проводимостей по поперечной и продольной осям ротора, не имеющего обмоток возбуждения или постоянных магнитов – такое определение дает ГОСТ 27471-87.

Принцип работы синхронного реактивного двигателя

Переменный ток, проходящий по обмоткам статора, создает вращающееся магнитное поле в воздушном зазоре электродвигателя. Крутящий момент создается когда ротор пытается установить свою наиболее магнито — проводящую ось (d-ось) с приложенным к нему полем, чтобы минимизировать сопротивление в магнитной цепи. Иными словами, вращающееся магнитное поле статора увлекает за собой ротор. Амплитуда потока статора управляется через ось d, тогда как ток, отвечающий за момент управляется через ось q. Оси приведены к статору двигателя.

В рассмотренном исполнении ротора разницы между магнитными сопротивлениями осей добиваются за счет увеличения воздушного зазора по оси q. Амплитуда момента прямо пропорциональна разнице между продольной Ld и поперечной Lq индуктивностями. Следовательно, чем больше разница, тем больше создаваемый момент. Математически это можно выразить с некоторыми допущениями, рассмотрев формулу электромагнитного момента для синхронной явнополюсной машины без возбуждения на роторе:

Мр = [mU 2 /(2ω1 )] (1/Хq — 1/Хd ) sin 2θ,

где m=3 для трехфазного исполнения статора, ω1- угловая скорость ротора, Xq -индуктивное сопротивление по оси q ротора, Xd — индуктивное сопротивление по оси d ротора, θ-угол между полем ротора и полем статора, характеризующий степень растянутости «магнитной пружины».

Таким образом, в отличие от синхронной машины с обмоткой возбуждения, синхронная реактивная машина в классическом представлении имела меньший момент, а также невысокий коэффициент мощности и коэффициент полезного действия (КПД). Объяснялось это значительным намагничивающим током статора, так как возбуждение происходит за счет реактивной составляющей тока. Пуск таких двигателей осуществлялся за счет демпфирующей короткозамкнутой обмотки, т.е. имел место асинхронный пуск синхронного двигателя. Но на сегодняшний день, СРД успешно эксплуатируются в комплекте с преобразователями частоты (ПЧ) YASKAWA GA700 и ПЧ GA500. Пуск происходит благодаря алгоритму, заложенному в ПЧ (управление током намагничивания id статора и током статора, отвечающим за момент iq), следовательно, необходимость асинхронного пуска устраняется. В итоге, коэффициент мощности и КПД у современных СРД заметно увеличился, а конструкция ротора стала максимально простой. В среднем у синхронных реактивных двигателей остается худший коэффициент мощности на 5-10% из-за принципиальных особенностей работы, но на 5- 8 % лучший КПД в сравнении с асинхронными двигателями как в номинальном режиме, так и при работе на всем диапазоне скоростей при регулировании скорости вниз от номинала.

Наибольший интерес у разработчиков систем электропривода вызвала конструкция СРД. Статор реактивного двигателя бывает с распределенной и сосредоточенной обмоткой. То есть, статор двигателя идентичен статору широко используемого асинхронного двигателя.

Особенно интересен ротор, который представляет собой вал с болванкой из шихтованной стали. На роторе отсутствуют обмотки, а также постоянные магниты.
Выделяют три основных типа ротора реактивного двигателя: ротор с явно выраженными полюсами, аксиально-расслоенный ротор и поперечно-расслоенный ротор.

а) Ротор с явно выраженными полюсами

б) Аксиально-расслоенный ротор

в) Поперечно-расслоенный ротор

Отличительная особенность синхронных реактивных двигате­лей (СРД) — отсутствие в них возбуждения со стороны ротора. Основной магнитный поток в этом двигателе создается исключительно за счет вращающейся МДС обмотки статора.

Так как, СРД – синхронная машина, то его механическая характеристика в разомкнутой системе будет абсолютно жесткой.


Достоинства и недостатки синхронного реактивного двигателя:

Преимущества СРД:

1. Простота и надежность ротора, состоящего из тонколистовой электротехнической стали, без магнитов и короткозамкнутой обмотки;

2. Низкий нагрев. Так как в роторе нет обмоток, поэтому через него не протекает активный ток с выделением тепла. Это положительно сказывается на сроке жизни подшипников, а также на коэффициенте полезного действия системы. Так как снижаются потери на нагрев, то номинальный ток двигателя может быть завышен, что позволяет получить (при аналогичной мощности) более высокий момент (на 20-40%), чем у асинхронного двигателя.

3. Отсутствие магнитов. Из-за этого снижается конечная цена двигателя, так как при производстве не используются редкоземельные элементы.

4. Низкий момент инерции ротора. Так как ротор представляет собой болванку без магнитов и обмоток, которые увеличивают этот показатель в асинхронных двигателях и двигателях с постоянными магнитами. Соответственно, уменьшается типоразмер двигателей. Из чего вытекает следующее преимущество.

5. Меньшие габариты при той же мощности в сравнении с АД.

6. Высокий КПД и cosφ (косинус фи). При работе от сети, а такие двигатели в старых системах работали от сети и снабжались дополнительной пусковой обмоткой на роторе, СРД демонстрировали не лучшие энергетические показатели, но применяя специализированный преобразователь частоты, например, YASKAWA GA700 и GA500, разработанный для работы с синхронными реактивными двигателями, картина в корне меняется. В таких преобразователях происходит разделение между сетью и питающим напряжением двигателя, а программное обеспечение позволяет корректировать выходной ток, создавая наиболее благоприятные условия работы двигателя (в GA700 режим EZOLV). Таким образом СРД оставляет за собой все преимущества, описанные выше, избегая недостатков возникавших ранее при работе от сети. Если все – таки происходит снижение коэффициента мощности, это может означать, что для данного применения должен быть выбран преобразователь на больший номинальный ток.

7. Абсолютно жесткая механическая характеристика в разомкнутой системе. Это говорит о том, что двигатель способен поддерживать скорость на заданном уровне с большой точностью, до тех пор, пока момент не превысит максимальное значение.

Недостатки СРД:

1. Пуск и работа СРД возможны только от преобразователя частоты. Бездатчиковая система управления отслеживания положения ротора является необходимым условием работы синхронного реактивного двигателя. Преобразователь в каждый момент времени отслеживает потребляемый ток двигателя, так как при повороте вала изменяется магнитное сопротивление в зазоре, и формирует магнитное поле в соответствии с этим изменением, добиваясь высокой производительности.

Читать еще:  Что такое общем двигателя

2. Низкий коэффициент мощности при работе с ослаблением поля. СРД демонстрируют лучшие энергетические показатели при работе в зоне насыщения. При выходе на повышенную скорость, необходимо уменьшить ток намагничивания машины id, в результате чего, заметно упадет момент двигателя, а коэффициент мощности резко снизится в следствие потребления большего реактивного тока. Поэтому для применений в которых осуществляется работа на повышенных скоростях такие двигатели лучше не использовать.

Заключение:

Синхронные реактивные двигатели являются перспективным направлением для интеграции в новые системы и для модернизации старых систем электропривода. Больший КПД на всем диапазоне скоростей в сравнении с СДПМ и АД способствует в пользу выбора этого двигателя при разработке новых систем, соответствующих международному стандарту энергоэффективности IE4. Простота конструкции ротора и проверенная технология изготовления статора позволяют такому двигателю легко найти свое применение в насосных агрегатах и вентиляторах, а также в применениях с постоянным моментом и регулированием скорости вниз от номинала. Единственной проблемой такого двигателя является потребление большего реактивного тока в сравнении с асинхронными двигателями, но при использовании частотного преобразователя YASKAWA GA700 и GA500 этот недостаток легко устраняется.

О КОМПАНИИ

В НИПТИЭМ разработаны современные синхронно-реактивные электродвигатели

Во владимирском ПАО «НИПТИЭМ» созданы синхронно-реактивные электродвигатели, не имеющие аналогов в России. Большая научно-исследовательская работа, проведенная сотрудниками института, завершилась созданием методики проектирования для таких электрических машин (их еще называют синхронными электродвигателями с анизотропной магнитной проводимостью ротора), а также изготовлением действующих образцов.

Вслед за мировыми лидерами электротехники — компаниями ABB и KSB — НИПТИЭМ, входящий в состав российского электротехнического концерна «Русэлпром», готов приступить к расширению линейки типоразмеров новых двигателей (от пяти уже разработанных до трех десятков возможных) и продолжает совершенствовать их технические характеристики.

Как отметил один из разработчиков, ведущий научный сотрудник ПАО «НИПТИЭМ» Алексей Захаров, интерес к синхронно-реактивным электрическим машинам вызван, прежде всего, их более высокими, чем у классических асинхронных двигателей, показателями — коэффициентом полезного действия, удельной мощностью.

Ротор такой машины не имеет ни обмотки, ни магнитов и выполнен из листов специальной формы, что значительно упрощает конструкцию. Высокая эффективность работы синхронно-реактивного двигателя обусловлена отсутствием в роторе энергетических потерь, которые составляют до 30% от всех потерь энергии в машине. Это, в свою очередь, увеличивает гарантированный срок службы электродвигателя, повышает его эффективность. Высокий КПД позволяет добиться сокращения объема потребляемой энергии, а значит, и снижения стоимости владения. Уменьшение на 20 процентов массы и габаритов двигателя относительно такого же, но асинхронного, соответственно влияет на его цену.

Предшественниками сегодняшней новации являются синхронно-реактивные двигатели, впервые запатентованные в конце XIX — начале XX веков. Вторая волна интереса к таким электрическим машинам поднялась на рубеже нового тысячелетия. НИПТИЭМ начал проводить научные исследования и разработки в этом направлении одним из первых в стране.

Синхронные реактивные двигатели (СРД)

Синхронные реактивные двигатели (СРД) изготавливаются на базе асинхронных электродвигателей, в тех же габаритах и с теми же установочно-присоединительными размерами. По сравнению с асинхронными электродвигателями, СРД имеют более высокий КПД. СРД оснащаются датчиком положения ротора для работы с преобразователем частоты. По требованию заказчика, для возможности прямого пуска от сети, СРД может быть оснащен пусковой обмоткой. СРД могут успешно применяться для механизмов, имеющих вентиляторный тип нагрузки, например, для привода вентиляторов, насосов и компрессоров и т.д., где не требуется высокий пусковой момент.

СРД ААА / В

СРД – синхронный реактивный двигатель;

ААА — высота оси вращения, мм;

В — число пар полюсов (2р).

Обозначение Номин. мощность, кВт Номин. частота вращения, мин-1 КПД, % Коэфф. мощности Номин. ток, А Номин. момент, Н*м Отношение максим. момента к номин. Отношение пускового момента к номин. Линейное напряжение питания, В
СРД160/6 18,5 1000 92 0,74 37 177 2 1.5* 400
СРД315/6 110 1000 98 0,72 265 1050 2 1.5* 400
СРД540/6 500 1000 97 0,85 495 4775 2 1.5* 800

Примечание: * — для двигателей с пусковой обмоткой при пуске от сети.

По требованию заказчика могут быть изготовлены СРД габаритов высоты оси вращения от 160 мм до 315 мм включительно с числом пар полюсов 2р= 4, 6 с частотой вращения 3000 мин-1, 1500 мин-1, 1000 мин-1.

Высокая эффективность этих двигателей позволяет изготавливать их на ступень выше по мощности или более высоким КПД по сравнению с асинхронными электродвигателями.

Дополнительную информацию можно получить по телефону +7 (4922) 33-13-37.

Вентильный реактивный электродвигатель

Вентильный реактивный электродвигатель (ВРД) — бесколлекторная синхронная машина, на обмотки статора которой подаются импульсы напряжения управляемой частоты, создающие вращающееся магнитное поле. Также известен под названием вентильно-индукторный двигатель [1] [2] , а устоявшийся англоязычный термин Switched Reluctance Motor (SRM) [3] [4] . Вращающий момент возникает за счёт стремления ротора к положению, при котором магнитный поток статора проходит по оси ротора, изготовленного из магнитомягкого материала, с наименьшим магнитным сопротивлением. Стоит различать данную электрическую машину и вентильно-индукторный двигатель с независимым возбуждением [5] , а также синхронный реактивный электродвигатель [6] (synchronous reluctance motor [7] [8] ), принцип формирования электрического момента и способ управления для которых иной.

Содержание

  • 1 Достоинства
  • 2 Недостатки
  • 3 См. также
  • 4 Примечания
  • 5 Литература
  • 6 Ссылки

Достоинства [ править | править код ]

Вентильные реактивные электродвигатели/генераторы имеют следующие достоинства:

Ротор и статор выполнены в виде пакетов листового магнитомягкого материала. На роторе ВРД отсутствуют обмотки и постоянные магниты. Фазные обмотки находятся только на статоре. Для уменьшения трудоёмкости изготовления катушек, обмотки статора могут изготавливаться отдельно, а затем надеваться на полюсы статора.

Простота обмотки якоря повышает ремонтопригодность ВРД/ВРГ, так как для ремонта достаточно сменить вышедшую из строя катушку.

Отсутствие механического коммутатора

Управление электромеханическим преобразователем электропривода/генератора осуществляется с помощью высокоэффективных силовых полупроводниковых элементов — IGBT или MOSFET (HEXFET) транзисторов, надёжность которых существенно превышает надёжность любых механических деталей, например: коллекторов, щёток, подшипников.

Отсутствие постоянных магнитов

ВРД/ВРГ не содержит постоянных магнитов ни на роторе, ни на статоре, при этом он успешно конкурирует по характеристикам с вентильными электрическими двигателями с постоянными магнитами (ВЭДПМ). В среднем, при одинаковых электрических и весогабаритных характеристиках ВРД/ВРГ имеет в 4 раза меньшую стоимость, значительно большую надёжность, более широкий диапазон частот вращения, более широкий диапазон рабочих температур. Конструктивно, по сравнению с ВЭДПМ, ВРД/ВРГ не имеет ограничения по мощности (практически, мощность ВЭДПМ ограничивается пределом около 20-40 кВТ). ВЭДПМ требуют защиты от металлической пыли, боятся перегрева и сильных электромагнитных полей, в случае короткого замыкания обмотки превращаются в самовозгорающуюся систему. Вентильные реактивные электродвигатели/генераторы свободны от всех этих недостатков.

Малое количество меди

На изготовление ВРД/ВРГ требуется в среднем в 2-3 раза меньше меди, чем для коллекторного электродвигателя такой же мощности, и в 1,3 раза меньше меди, чем для асинхронного электродвигателя.

Tепловыделение происходит в основном только на статоре, при этом легко обеспечивается герметичная конструкция, воздушное или водяное охлаждение

В рабочем режиме не требуется охлаждение ротора. Для охлаждения ВРД/ВРГ достаточно использовать наружную поверхность статора.

Высокие массогабаритные характеристики

В большинстве случаев ВРД/ВРГ может быть выполнен с полым ротором. Толщина спинки ротора при этом должна быть не менее половины ширины полюса. Подбором количества полюсов статора и ротора могут быть оптимизированы массогабаритные характеристики электродвигателя/генератора, его мощность при заданном моменте и диапазоне частоты вращения.

Простота конструкции ВРД/ВРГ снижает трудоёмкость его изготовления. В сущности, его можно изготовить даже на не специализирующемся в области электромашиностроения промышленном предприятии. Для серийного производства ВРД/ВРГ требуется обычное механическое оборудование — штампы для изготовления шихтованных сердечников статора и ротора, токарные и фрезерные станки для обработки валов и корпусных деталей. Трудоёмкие и сложные в технологическом отношении операции, например изготовление коллектора и щёток коллекторного электродвигателя или заливка клетки ротора асинхронного двигателя, здесь отсутствуют. По предварительным оценкам трудоёмкость изготовления ЭМП вентильного реактивного электродвигателя составляет на 70 % меньше трудоёмкости изготовления коллекторного и на 40 % меньше трудоёмкости изготовления асинхронного электродвигателя.

Простота обмотки статора и отсутствие обмотки и магнитов на роторе обеспечивает ВРД/ВРГ высокую гибкость компоновки. Конструкция электродвигателя/генератора может быть плоской, вытянутой, обращённой, секторной, линейной. Для выпуска целого типоряда электродвигателей/генераторов с различной мощностью можно использовать один и тот же комплект штампов для вырубки ротора и статора, поскольку для увеличения мощности достаточно увеличить соответственно длину набора ротора и статора. Не составляет труда изготовление машины с расположением статора как снаружи ротора, так и наоборот, а также встраивание электроники в корпус машины. Изменение коэффициента электромагнитной редукции позволяет создавать машины для облегчённых и, напротив, тяжёлых условий работы, включая моментные двигатели. Для привода некоторых рабочих машин выгоднее иметь линейные электродвигатели с возвратно-поступательным перемещением зубцового штока (аналога ротора). В ряде случаев может быть использована давно известная, но неэффективная в случае асинхронного электродвигателя конструкция дугостаторной машины, статор которой охватывает доступную для размещения дугу окружности ротора, в качестве которого может использоваться вал с зубчатым колесом.

Простота конструкции обеспечивает ВРД/ВРГ более высокую безотказность, чем безотказность других типов электрических машин. Конструктивная и электрическая независимость фазных обмоток обеспечивает работоспособность ВРД даже в случае полного замыкания полюсной катушки одной из фаз. ВРГ остаётся работоспособным даже после выхода из строя одной или двух фаз.

Широкий диапазон частот вращения (от единиц до сотен тысяч об/мин)

Электромагнитная редукция позволяет создавать малогабаритные «моментные» электродвигатели для приводов роботов, манипуляторов и других низкооборотных механизмов или низкооборотные высокоэффективные генераторы для ветровых или волновых электростанций. В то же время частота вращения быстроходных ВРД/ВРГ может превышать 100000 об/мин.

Высокий КПД в широком диапазоне частот вращения

Практически достижимый КПД вентильного реактивного электродвигателя/генератора мощностью 1 КВт может доходить до 90 % в диапазоне 5-10-кратной перестройки частоты вращения. КПД более мощных электрических машин может достигать 95-98 %.

ВРД часто путают с синхронным реактивным электродвигателем (СРД), обмотки якоря которого питаются синусоидально изменяющимися напряжениями без обратной связи по положению ротора. СРД имеет низкий КПД, который не превышает 50 % для маломощных электродвигателей и до 70 % для мощных электрических машин.

Импульсный характер питания ЭМП обеспечивает удобную стыковку с современной цифровой электроникой

Поскольку ВРД/ВРГ питается (возбуждается) однополярными импульсами, для управления ЭМП требуется простой электронный коммутатор. Управляя скважностью импульсов силовых транзисторов электронного коммутатора можно плавно изменять форму импульсов тока фазных обмоток электродвигателя или генератора.

Электронное управление электрическими и механическими характеристиками, режимом работы

Естественная механическая характеристика ВРД/ВРГ определяется реактивным принципом действия электрической машины и близка к гиперболической форме. Основное свойство такой характеристики — постоянство мощности на валу машины — оказывается чрезвычайно полезным для электроприводов с ограниченной мощностью источника, так как при этом легко реализуется условие его неперегружаемости. Применение замкнутой системы управления с обратными связями по скорости и нагрузке позволяет получить механические характеристики любой заданной формы, включая абсолютно жёсткие (астатические), и не ведёт к какому либо усложнению системы управления, так как её процессор обладает большой избыточностью по числу входов и выходов, быстродействию и памяти. Фактически поле доступных механических характеристик непрерывным образом покрывает все четыре квадранта плоскости момент-скорость в пределах области ограничений конкретного электропривода.

Низкая стоимость электромеханического преобразователя

Стоимость ВРД оказывается самой низкой из всех известных конструкций электрических машин. Дорогостоящим в рассматриваемой системе электропривода можно считать электронный преобразователь, который является обязательным элементом всех современных регулируемых электроприводов. Однако, цены на изделия силовой электроники по мере развития масштабов производства имеют устойчивую тенденцию к снижению. Исключение из состава ВРД/ВРГ коммутационных аппаратов, для изготовления которых необходима непрерывно дорожающая медь, также способствует уменьшению стоимости.

Наконец, экономическая эффективность ВРД повышается также в результате существенно меньшего расхода электроэнергии, обусловленного высоким КПД электродвигателя и применением наиболее экономичных стратегий управления в динамических режимах работы.

Недостатки [ править | править код ]

Вентильные реактивные электродвигатели/генераторы имеют следующие недостатки [9] :

низкий коэффициент мощности

Он обусловлен значительной величиной намагничивающей составляющей тока статора.

низкий КПД при небольших мощностях

В реактивных двигателях мощностью в несколько десятков Вт КПД составляет 30-40 %, а в двигателях мощностью до 10 Вт — не превышает 10 %.

по габаритам реактивные двигатели больше синхронных и асинхронных двигателей

Это объясняется низким КПД, малым cos ⁡ ( φ ) и небольшой величиной реактивного момента.

Ссылка на основную публикацию
Adblock
detector