Характеристики судовых главных двигателей

Мощность завтрашнего дня уже сегодня: оптимизация работы судовых двигателей с помощью системной симуляции.

Как программное обеспечение для системной симуляции помогает оптимизировать кпд двигателя и сократить затраты на разработку

Судовые двигатели отличаются сложной конструкцией, состоящей из множества взаимодействующих систем. Как проанализировать взаимодействие систем и его влияние на характеристики изделия еще до создания полного прототипа двигателя? Как добиться оптимальных характеристик судовых двигателей в любых условиях эксплуатации?

На этом вебинаре будет рассматриваться использование численного моделирования систем для проектирования двигателя внутреннего сгорания судна. Узнайте, как использовать 1D-симуляцию на ранних этапах проектирования судовых двигателей. Это означает, что вы сможете проанализировать характеристики судового двигателя, учесть все его сложные системы, оценить возможность использования альтернативных видов топлива и сравнить различные конфигурации изделий на ранних этапах планирования. Получите общее представление об использовании программного обеспечения для численного моделирования систем и узнайте, как это поможет сократить время проектирования, повысить кпд двигателей и судна.

Как программное обеспечение для численного моделирования систем используется при проектировании судов?

Данный вебинар рассказывает об использовании программного обеспечения для симуляции систем двигателя, затрагиваются следующие аспекты:

  • Внутрицилиндровое горение
  • Управление тепловым состоянием двигателя
  • Забор воздуха, выхлоп и запуск двигателя
  • Системы очистки выхлопных газов
  • Электрификация
  • Интеграция двигателя

Каждая из этих областей связана с различными проблемами, но наше программное обеспечение для численного моделирования систем содержит инструменты и библиотеки для упрощения оценки производительности и получения быстрых результатов. Представленные методы подкреплены примерами реальных заказчиков.

Этот вебинар будет интересен производителям главных двигателей судов и всем, кто заинтересован в повышении эффективности судов и сокращении выбросов парниковых газов.

Перед судостроительной отраслью постоянно стоит задача выполнения нормативных требований путем повышения энергоэффективности судов и сокращения выбросов оксидов озота, серы и углекислого газа. В то же время, экономические условия складываются так, что только самые эффективные компании выживут на рынке. Компании испытывают на себе давление, что заставляет их искать пути снижения расходов на разработку и одновременного улучшения характеристик судов. В данном вебинаре рассказывается, как численное моделирование систем помогает решать данные трудности и оптимизировать характеристики судовых двигателей. В нем вы найдете ответы на следующие вопросы:

  • Является ли основной двигатель достаточно мощным, чтобы выдержать условия эксплуатации судна?
  • Как я могу оптимизировать конструкцию системы управления?
  • Как двигатель реагирует на тяжелые погодные условия?
  • Возможно ли внедрить гибридную двигательную установку или использовать альтернативный вид топлива, такой как сжиженный газ, аммиак или водород?

Пример заказчика: MAN Energy solutions сокращает время разработки системы подачи топлива в главном двигателей в пять раз.

Гибридные и двойные топливные системы представляют особый интерес для судостроительной отрасли, а также помогают сократить выбросы и сохранить гибкость. MAN Energy solutions использовала Simcenter Amesim для моделирования систем подачи жидкого и газообразного топлива и проектирования нового двигателя с двойной топливной системой. Это сократило количество дорогостоящих тестирований прототипов двигателей и общее время разработки в пять раз. Узнайте больше об историях успеха заказчика этого и других заказчиков на этом вебинаре.

Познакомьтесь с нашим экспертом по программному обеспечению для численного моделирования систем для судостроения.

Ромен обладает десятилетним опытом использования программного обеспечения для численного моделирования систем при проектировании и оптимизации двигателей. На текущей позиции он работает с судостроительными компаниями, а также производителями тяжелого оборудования, консультирует их по использованию Simcenter Amesim, определяет их потребности и направляет в разработке изделий.

Зарегистрируйтесь для просмотра вебинара

Здравствуйте, Боб (будет заменено на имя реального пользователя)

Нагрузочные характеристики двигателей внутреннего сгорания

По нагрузочной характеристике работают вспомогательные двигатели, предназначенные для привода генераторов, компрессоров, насосов, а также главные двигатели на судах с электро-движением или главные двигатели, работающие на винт регулируемого шага. Определяющим условием нагрузочной характеристики является постоянство частоты вращения (n = const). Постоянство частоты вращения поддерживается автоматическим регулятором в пределах ±Зч÷5% путем изменения активного хода плунжеров топливных насосов высокого давления и соответствующего изменения цикловых подач топлива при изменении нагрузки двигателя.

В качестве показателя нагрузки двигателя может быть принята эффективная мощность Ne, момент на фланце отбора мощности Me, среднее эффективное давление Ре. Эти параметры в равной степени определяют нагрузку. Чаще всего в качестве параметра нагрузки принимается среднее эффективное давление.

Изменение энерго-экономических показателей

Характерной особенностью нагрузочной характеристики является постоянство мощности механических потерь двигателя NM = const при n = const независимо от нагрузки (Рис. 1). Это положение установлено многочисленными исследованиями и объясняется малой зависимостью сил зрения в трущихся деталях дизеля от нагрузки при постоянной частоте вращения.

Зависимость эффективной мощности от Ре определяется равенством:

Ne = Ре (Vs n i / 0,06 m) кВт

Для конкретного дизеля можно написать:

Ne = к п Ре (№1)

где к — коэффициент пропорциональности.

Рис. 1 Изменение показателей работы дизеля по нагрузочной характеристике

Как следует из этой формулы, при n = const характеристика Ne (Pe) является прямой линией, выходящей из начала координат. Зависимость индикаторной мощности Индикаторная и эффективная мощность двигателя от Ре пройдет эквидистантно прямой Ne(Pe), поскольку Ni = Ne + Nм.

Механический КПД дизеля определяется равенством:

ηм = 1 — Nм / Ni

На холостом ходу (при Ре = 0) механический КПД равен 0, т.к. вся индикаторная мощность при этом идет на преодоление механических потерь двигателя: Ni = Nм. При возрастании нагрузки ηм возрастает, достигая максимума при 100% Ре.

При изменении Ре от 100% в сторону уменьшения нагрузки индикаторный КПД дизеля ηi сначала возрастает, достигая максимума у двигателей с наддувом при Ре = (20+30)% от Ре мax , а затем начинает уменьшаться. Такое изменение ηi обуславливается изменением 2-х факторов. С уменьшением нагрузки уменьшается цикловая подача топлива в цилиндр, возрастает коэффициент избытка воздуха на сгорание.

Читать еще:  Асинхронный однофазный двигатель регулировка оборотов

Увеличение а приводит к росту скорости и полноты сгорания топлива, сгорание смещается в сторону верхней мертвой точки, что способствует снижению тепловых потерь двигателя ( в первую очередь потерь с уходящими газами). Однако по мере снижения цикловой подачи топлива избыток воздуха становится чрезмерным (α = 4÷5 и более), уменьшается температура цикла и температура стенок.

Из-за малых цикловых подач ухудшается распыливание топлива, смесеобразование и сгорание. При этом возрастает период задержки самовоспламенения τi,. Процесс сгорания переходит на линию расширения (рис. №2), растет доля тепла с уходящими газами (по сравнению с полезно используемым теплом). Индикаторный КПД уменьшается, достигая на режиме холостого хода величин, близких к значениям ηi на полной нагрузке. Более раннее и более интенсивное снижение ηi, наблюдается у двигателей с регулированием ТНВД по началу подачи, что связанно с худшим распыливанием топлива и уменьшением угла опережения подачи топлива (вплоть до смещения угла φнпн за ВМТ) при снижении нагрузки двигателя.

Рис. 2 Вид развернутой индикаторной диаграммы при полной нагрузке (Ре=100%) и на холостом ходу (Ре=0)

У двигателей без наддува или с механическим нагнетателем расход воздуха на двигатель практически не зависит от нагрузки, что способствует более интенсивному возрастанию α при уменьшении Ре, чем в двигателях с газотурбинным наддувом. Следовательно, у этих двигателей максимум гр достигается при более высоких Ре, а индикаторный КПД на холостом ходу у двигателей без наддува при прочих равных условиях меньше, чем ηi у двигателей с ГТН.

Эффективный КПД двигателя определяется совместным влиянием индикаторного и механического КПД: ηе = ηi ηм. При возрастании нагрузки от режима холостого хода ηе растет подобно росту механического КПД, достигая максимума вблизи номинальной нагрузки. Последующее снижение ηе является результатом ухудшения индикаторного процесса из-за снижения α и уменьшения индикаторного КПД. Обычно максимальное значение эффективного КПД достигается при Ре ≈ 0,85 Ре ном.

Удельные расходы топлива связаны с КПД зависимостями:

Как видно, удельные расходы топлива Удельные расходы топлива изменяются по зависимостям, обратно пропорциональным изменению соответствующих КПД.

Практически эффективные показатели работы двигателя могут быть определены в условиях испытательного стенда путем измерения эффективной мощности Ne (но показаниям нагрузочного устройства) и часового расхода топлива на установившихся режимах работы. Индикаторные показатели могут быть найдены по результатам индицирования или осциллографирования двигателя (определяется среднее индикаторное давление Определение среднего индикаторного давления , индикаторная мощность и т.д.). Мощность механических потерь и механический КПД находятся из соотношения эффективных и индикаторных показателей.

В том случае, если индикаторные показатели работы двигателя прямо определить невозможно (к примеру, в судовых условиях, где дизель — генераторы обычно не имеют индикаторного привода Проверка регулировки индикаторного привода для снятия индикаторных диаграмм), индикаторная мощность и прочие индикаторные показатели определяются ориентировочно через механический КПД:

Механический КПД находится по соотношению расходов топлива на двигатель на холостом ходу и на режиме номинальной нагрузки. При этом делается допущение, что индикаторный КПД дизеля на холостом ходу такой же, как и на режиме номинальной нагрузки: ηix.x ≈ η. В этом случае можно написать:

На холостом ходу мощность механических потерь равна индикаторной мощности: Nм= Ni, а часовой расход топлива равен Gx.x = Nм gix.x. Соответственно на режиме номинальной нагрузки часовой расход топлива составит: Gн = Ni g. Подставив полученные значения величин в приведенную выше зависимость для ηм, получим для режима номинальной нагрузки:

Погрешность определения индикаторных показателей с помощью этой зависимости оценивается погрешностью допущения равенства индикаторного КПД на холостом ходу и на номинальной нагрузке.

По нагрузочной характеристики ge = f(Ре) в условиях стенда может быть в первом приближении установлена номинальная мощность двигателя. Для этого по результатам стендовых испытаний при расчетной частоте вращения из точки О (рис. №3) проводится касательная к кривой ge = f(Ре). Вправо от точки касания расход топлива увеличивается более интенсивно, чем возрастает среднее эффективное давление, интенсивно растет температура цилиндро-поршневой группы. Как правило, точка Е определяет предельно допустимые значения среднего эффективного давления, мощности, цикловой подачи топлива. Дальнейшее повышение цикловой подачи должно быть ограничено упором. Номинальное значение мощности целесообразно установить левее точки Е, где Ре меньше на 10%. Окончательно режим номинальной мощности и численное значение номинальной нагрузки устанавливается в результате тщательного анализа всех энерго-экономических и других показателей работы дизеля (главным образом показателей тепловой напряженности Изменение тепловой напряженности ).

Рис. 3 Определение номинальной мощности дизеля

Глава III. Главные судовые двигатели

§ 17. Характеристики главных судовых энергетических установок

Главными показателями, которые определяют технико-экономические качества судовых энергетических установок, являются:
— малый вес и небольшие габариты при достаточной мощности, что способствует повышению скорости хода судна;
— простота обслуживания и высокая экономичность;
— живучесть и надежность в работе при различных внешних воздействиях;
— быстрое изменение нагрузки главных машин и направления вращения гребных винтов (реверс);
— быстрый пуск и развитие полной мощности в наиболее короткое время;
— устойчивость работы главных машин при малой частоте вращения;
— минимально возможная шумность и отсутствие вибраций корпуса при работе главных машин;
— технологичность конструкции во время монтажа и ремонта установки.

Основные типы главных судовых энергетических установок, отвечающие указанным требованиям и применяемые в настоящее время на морских судах, были перечислены ранее в § 6, гл. I. Ниже приводятся основные характеристики каждой из этих установок.

Читать еще:  Влияют ли свечи на расход масла в двигателе

Установки с двигателями внутреннего сгорания (ДВС). Современные установки такого типа отличаются высокой мощностью, надежностью в работе и экономичностью. Перспективным в применении этих установок на морских судах является использование для их работы тяжелых сортов топлива. Строящиеся в настоящее время на отечественных заводах мощные дизельные установки (с агрегатной мощностью до 15000 квт) могут кратковременно (при пуске и реверсах) работать на дизельном топливе и длительно (в период рейса) — на тяжелом топливе. Осваивается постройка еще более мощных дизелей — до 25 000 квт.

В зависимости от назначения и типа судна установки с ДВС могут быть реверсивными и нереверсивными. В первом случае они работают на гребной вал непосредственно или через какую-либо передачу (зубчатую, гидравлическую и др.). Нереверсивные установки имеют или специальные реверсивные муфты, или передают энергию непосредственно на гребной вал, имеющий винт регулируемого шага (ВРШ), или приводят в движение электрогенераторы, питающие током гребные электродвигатели.

Паротурбинные установки. Такие установки могут обладать неограниченной мощностью; их применяют исключительно на крупных морских судах. Современная паротурбинная установка имеет мощность 150 000 квт и более при частоте вращения ротора до 12 000 об/мин и в то же время отличается относительно малыми габаритами и небольшим удельным весом, т. е. весом установки, приходящимся на единицу мощности.

В отличие от ДВС основные подвижные детали паротурбинной установки совершают вращательное движение, что создает возможность их полного уравновешивания, обеспечивает плавность работы и исключает вибрацию. Кроме того, отсутствие поступательно движущихся трущихся частей позволяет снизить потери энергии на трение, а следовательно, повысить механический к. п. д. установки.

Однако применение паротурбинных установок на морских судах ограничивается рядом недостатков, свойственных этим установкам. Для работы паровых турбин необходим пар, поэтому на судне устанавливают громоздкие и тяжелые паровые котлы со всеми обслуживающими их вспомогательными механизмами и трубопроводами. С целью уменьшения высокой частоты вращения турбин до приемлемой для работы гребных винтов (75—250 об/мин) между турбинами и гребным валом размещают понижающую зубчатую (редукторную) передачу. Для обеспечения обратного направления вращения гребного винта в один из корпусов турбин встраивают турбину заднего хода или применяют специальное реверсивное устройство. Все это утяжеляет турбинную установку, делает ее громоздкой и снижает механический к. п. д. Кроме того, большой расход пара при работе турбины на малых режимах и при реверсах делает нерентабельным их применение для судов с малой мощностью энергетической установки (менее 5000 квт).

Газотурбинные установки. Развитие газотурбинных установок (ГТУ) началось в послевоенный период. Особенно широкое распространение получили газотурбинные установки со свободно-поршневыми генераторами газа (СГТГГ), сочетающие в себе положительные качества ДВС (высокая экономичность) и газовой турбины (малый удельный вес).

Современные ГТУ обладают мощностью до 20 000 квт при частоте вращения ротора турбин до 6000 об/мин. Они отличаются быстротой пуска, надежностью в работе, простотой в изготовлении и обслуживании. Отсутствие громоздкой котельной установки, тяжелых паропроводов и конденсатора и сравнительно малые габариты ГТУ позволяют сократить и рационально использовать объем машинного отделения, увеличить объем трюмов и полезную грузоподъемность судна. Благодаря полной уравновешенности движущихся частей у газовой турбины и генераторов газа они не передают вибрацию корпусу судна и потому могут устанавливаться на облегченном фундаменте. Газовые турбины и генераторы газа более просты по конструкции, чем дизельные установки, не требуют специального обслуживания и вскрытия в течение навигации, а их профилактический осмотр можно проводить во время рейса без существенного снижения скорости хода судна.

Ядерные энергетические установки. Значительные успехи, достигнутые в области ядерной энергетики, позволили создать судовые ядерные энергетические установки (ЯЭУ), применяемые в настоящее время на судах транспортного и военно-морского флота. Одним из преимуществ ЯЭУ перед другими типами установок является высокая концентрация энергии в ядерном горючем.

Наряду с несомненными преимуществами ЯЭУ имеют и ряд недостатков, связанных с необходимостью ограждения активной зоны ЯЭУ специальной биологической защитой, имеющей значительные вес и габариты, а также применения автоматизации и дистанционного управления механизмами, находящимися внутри этой защиты. Все это усложняет установку и повышает требования к надежности ее работы. Кроме того, стоимость постройки и эксплуатации атомных судов выше, чем обычных судов морского флота.

Рассмотренные судовые энергетические установки наиболее распространены в морском судостроении. На судах старой постройки еще встречаются установки с паровыми поршневыми машинами. Несмотря на простоту и надежность в эксплуатации, а также довольно значительный срок службы (40—50 лет и более), они громоздки, маломощны и малоэкономичны. На вновь строящихся судах такие установки применения не находят. В табл. 1 приведены основные характеристики современных судовых энергетических установок.

Судовые двигатели и установки

К движителям относятся гребной винт и гребное колесо. В качестве судовых энергетических установок используются, как правило, паровые машины и турбины, газовые турбины и двигатели внутреннего сгорания, в основном дизельные. На крупных и мощных специализированных судах типа ледоколов и подводных лодок часто применяются атомные энергетические установки.

По-видимому, первым предложил использовать энергию пара для движения судов Леонардо да Винчи (1452–1519). В 1705 Т.Ньюкомен (Англия) запатентовал первую довольно эффективную паровую машину, но его попытки использовать возвратно-поступательное движение поршня для вращения гребного колеса оказались неудачными.

ТИПЫ СУДОВЫХ УСТАНОВОК

Пар – традиционный источник энергии для движения судов. Пар получают при сжигании топлива в водотрубных котлах. Чаще других применяются двухбарабанные водотрубные котлы. В этих котлах имеются топки с водоохлаждаемыми стенками, пароперегреватели, экономайзеры, а иногда и воздухоподогреватели. Их КПД достигает 88%.

Читать еще:  Этапы запуска авиационного двигателя

Дизели впервые появились в качестве судовых двигателей в 1903. Расход топлива в судовых дизелях составляет 0,25–0,3 кг/кВтЧч, а паровые машины расходуют 0,3–0,5 кг/кВтЧч в зависимости от конструкции двигателя, привода и других конструктивных особенностей. Дизели, особенно в сочетании с электроприводом, очень удобны для применения на паромах и буксирах, поскольку обеспечивают высокую маневренность.

Поршневые паровые машины.

Времена поршневых машин, когда-то служивших самым разнообразным целям, прошли. По КПД они существенно уступают как паровым турбинам, так и дизелям. На тех судах, где еще стоят паровые машины, – это компаунд-машины: пар расширяется последовательно в трех или даже четырех цилиндрах. Поршни всех цилиндров работают на один вал.

Судовые паровые турбины обычно состоят из двух каскадов: высокого и низкого давления, каждый из которых через понижающий редуктор вращает вал гребного винта. На военно-морских судах часто дополнительно ставят небольшие турбины для крейсерского режима, которые используют для повышения экономичности, а при максимальных скоростях включаются мощные турбины. Каскад высокого давления вращается со скоростью 5000 об/мин.

Газовые турбины появились на судах значительно позже, чем в авиации, поскольку выигрыш в весе в судостроении не так важен, и этот выигрыш не перевешивал высокую стоимость и сложность монтажа и эксплуатации первых газовых турбин.

Газовые турбины используют на судах не только как главные двигатели; они нашли применение в качестве приводов для пожарных насосов и вспомогательных электрогенераторов, где выгодны их небольшой вес, компактность и быстрый запуск. В военно-морском флоте газовые турбины широко применяются на небольших скоростных судах: десантных катерах, минных тральщиках, судах на подводных крыльях; на больших кораблях их используют для получения максимальной мощности.

Современные газовые турбины обладают приемлемым уровнем надежности, стоимости эксплуатации и производства. Учитывая их малый вес, компактность и быстрый запуск, они во многих случаях становятся конкурентоспособными с дизелями и паровыми турбинами.

Впервые дизель как судовой двигатель был установлен на «Вандале» в Санкт-Петербурге (1903).

Это произошло всего через 6 лет после изобретения Дизелем своего двигателя. На «Вандале», ходившем по Волге, было два гребных винта; каждый винт устанавливался на одном валу с 75-кВт электродвигателем. Электроэнергия вырабатывалась двумя дизель-генераторами. Трехцилиндровые дизели мощностью по 90 кВт имели постоянную частоту вращения (240 об/мин). Мощность от них нельзя было передавать непосредственно на гребной вал, поскольку не было реверса.

Пробная эксплуатация «Вандала» опровергла общее мнение, что дизели нельзя применять на судах из-за опасности вибраций и высоких давлений. Более того, расход топлива составил только 20% от расхода топлива на пароходах того же водоизмещения.

За десять лет, прошедших после установки первого дизеля на речное судно, эти двигатели подверглись значительному усовершенствованию. Увеличилась их мощность за счет повышения числа оборотов, увеличения диаметра цилиндра, удлинения хода поршня, а также разработки двухтактных двигателей. Число оборотов существующих дизелей составляет от 100 до 2000 об/мин; высокооборотные дизели применяются на небольших быстроходных катерах и во вспомогательных дизель-генераторных системах. Их мощность варьируется в столь же широком диапазоне (10–20 000 кВт). В последние годы появились дизели с наддувом, что увеличивает их мощность примерно на 20%.

Сравнение дизельных двигателей с паровыми.

Дизели имеют преимущество над паровыми двигателями на небольших судах благодаря своей компактности; кроме того, они легче при одинаковой мощности. Дизели расходуют меньше топлива на единицу мощности; правда, дизельное топливо дороже топочного. Расход дизельного топлива можно уменьшить дожиганием отработанных газов. На выбор энергетической установки влияет и тип судна. Дизельные двигатели запускаются гораздо быстрее: их не надо предварительно разогревать. Это очень важное преимущество для портовых судов и вспомогательных или резервных силовых установок. Однако есть преимущества и у паротурбинных установок, которые надежнее в эксплуатации, способны длительное время работать без регламентного обслуживания, отличаются меньшим уровнем вибраций благодаря отсутствию возвратно-поступательного движения.

Судовые дизели отличаются от прочих дизелей только вспомогательными элементами. Они непосредственно либо через редуктор вращают гребной вал и должны обеспечивать обратное вращение. В четырехтактных двигателях для этого служит дополнительная муфта обратного хода, которая входит в зацепление при необходимости обратного вращения. В двухтактных двигателях с обеспечением обратного вращения проще, поскольку последовательность работы клапанов определяется положением поршня в соответствующем цилиндре. В небольших двигателях обратное вращение получают с помощью муфты сцепления и зубчатой передачи. На некоторых сторожевых кораблях и амфибиях длиной менее 60 м ставят реверсивные гребные винты. Для того чтобы число оборотов двигателя не превысило безопасный предел, все двигатели оборудованы ограничителями частоты вращения.

Термином «суда с электрической тягой» называют суда, у которых одним из элементов системы преобразования энергии топлива в механическую энергию вращения гребного вала является электрическая машина. Один или несколько электродвигателей соединяются с валом винта напрямую или через редуктор. Питание электродвигателей осуществляется от электрогенераторов, приводом которых служит паровая или газовая турбина либо дизель. На подводных лодках в подводном положении питание электродвигателей осуществляется от аккумуляторов, а в надводном – от дизель-генераторов. Электрические машины постоянного тока обычно устанавливаются на небольших и на высокоманевренных судах. Машины переменного тока используются на океанских лайнерах.

Атомные энергетические установки .

На судах с атомными энергетическими установками главным источником энергии является ядерный реактор. Тепло, выделяющееся в процессе деления ядерного горючего, служит для генерации пара, поступающего затем в паровую турбину.

Информация взята с сайта krugosvet.ru


Приглашаем ознакомиться с другими товарами в Санкт-Петербурге

Ссылка на основную публикацию
Adblock
detector