Характеристики тяговых двигателей электропоездов

КАКОМУ ДВИГАТЕЛЮ ОТДАТЬ ПРЕДПОЧТЕНИЕ?

Наибольшее распространение в промышленности получили электрические двигатели двух видов: переменного тока — трехфазные асинхронные и постоянного тока — коллекторные с различными способами возбуждения. Какой же из них лучше использовать на электровозе?
Двигатели, которые могут быть использованы в качестве тяговых на электровозе, должны удовлетворять как минимум двум требованиям. Прежде всего они должны допускать возможность регулирования в широких пределах частоты вращения. Это позволяет изменять скорость движения поезда. Кроме того, необходимо иметь возможность регулировать в широком диапазоне силу тяги, т. е. вращающий момент, развиваемый двигателем. Так, двигатели электровоза должны обеспечивать значительную силу тяги во время трогания поезда, его разгона, при преодолении крутых подъемов и т. п. и снижать ее при более легких условиях движения.
С точки зрения организации движения, казалось бы, желательно, чтобы поезда независимо от изменения сопротивления движению перемещались с постоянной скоростью или эта скорость снижалась бы незначительно. В этом случае зависимость между силой тяги F и скоростью движения и (рис. 11, а) представляла бы в прямоугольных осях координат вертикальную прямую линию 1, параллельную оси F, или слегка наклонную линию 2. Зависимость между силой тяги, развиваемой двигателями локомотива, и скоростью его движения называют тяговой характеристикой и представляют ее графически, как показано на рис. 11, или в виде таблиц.

Изображенные на рис. 11, (а) тяговые характеристики являются жесткими. В случае жесткой характеристики мощность, потребляемая двигателями и равная произведению силы тяги на скорость, например, на крутых подъемах, возрастает пропорционально увеличению силы тяги (произведение V1F1 значительно меньше V2F2, см. рис. 11, а). Резкое увеличение потребляемой мощности приводит к необходимости повышения мощности как самих двигателей, так и тяговых подстанций, увеличения площади сечения контактной подвески, что связано с затратами денежных средств и дефицитных материалов. Избежать этого можно, обеспечив характеристику двигателя, при которой с увеличением сопротивления движению поезда автоматически снижалась бы его скорость, т. е. так называемую мягкую характеристику (рис. 11, б). Она имеет вид кривой, называемой гиперболой. Двигатель с такой тяговой характеристикой работал бы при неизменной мощности (V1F1= V2F2). Однако при движении тяжелых составов на крутых подъемах, когда необходима большая сила тяги, поезда перемещались бы с очень низкой скоростью, тем самым резко ограничивая пропускную способность участка железной дороги. Примерно такой характеристикой обладают тепловозы, так как мощность их тяговых двигателей ограничена мощностью дизеля. Это относится и к паровой тяге, при которой мощность ограничивается производительностью котла.
Мощность, развиваемая тяговыми двигателями электровоза, практически не ограничена мощностью источника энергии. Ведь электровоз получает энергию через контактную сеть и тяговые подстанции от энергосистем, обычно обладающих мощностями, несоизмеримо большими мощности электровозов. Поэтому при создании электровозов стремятся получить характеристику, показанную на рис. 11, (б) штриховой линией. Электровоз, оборудованный двигателями с такой характеристикой, может развивать значительную силу тяги на крутых подъемах при сравнительно высокой скорости. Конечно, мощность, потребляемая тяговыми двигателями в условиях больших сил тяги, повышается (V1’F1 несколько больше V1F1), но это не приводит к резким перегрузкам питающей системы.

Трехфазные асинхронные двигатели самые распространенные. Достоинства их трудно переоценить: простота устройства и обслуживания, высокая надежность, низкая стоимость, несложный пуск. Однако, как известно, частота вращения асинхронного двигателя почти постоянна и мало зависит от нагрузки, она определяется частотой подводимого тока и числом пар полюсов двигателя. Поэтому регулировать частоту вращения таких двигателей, а следовательно, и скорость движения поездов можно только изменением частоты питающего тока и числа пар полюсов, что трудно осуществить. Кроме того, как уже отмечалось выше, для питания таких двигателей требуется устраивать сложную контактную сеть. Поэтому асинхронные двигатели до недавнего времени почти не применяли на электровозах.
Благодаря развитию полупроводниковой техники оказалось возможным создать преобразователи однофазного переменного тока в переменный трехфазный и регулировать их частоту. Это позволило построить электровозы, на которых в качестве тяговых используются трехфазные асинхронные двигатели. Подробнее о таких электровозах будет рассказано ниже. Отметим, что абсолютно жесткой характеристикой (см. рис. 11, а) обладает синхронный двигатель.
В какой же степени отвечают требованиям, предъявляемым к тяговым двигателям, электрические машины постоянного тока? Напомним, что эти машины — генераторы и двигатели — различаются по способу возбуждения.

Обмотка возбуждения может быть включена параллельно обмотке якоря (рис. 12, а) и последовательно с ней (рис. 12, б). Такие двигатели называют соответственно двигателями параллельного и последовательного возбуждения. Используют также двигатели, у которых имеются две обмотки возбуждения — параллельная и последовательная. Их называют двигателями смешанного возбуждения (рис. 12, в). Если обмотки возбуждения включены согласно, т. е. создаваемые ими магнитные потоки складываются, то такие двигатели называют двигателями согласного возбуждения ; если потоки вычитаются, то имеем двигатели встречного возбуждения . Применяют и независимое возбуждение : обмотка возбуждения питается от автономного (независимого) источника энергии (рис. 12, г).
Чтобы оценить возможности регулирования частоты вращения двигателя постоянного тока, напомним, что при вращении в магнитном поле проводников обмотки якоря двигателя в них возникает (индуцируется) электродвижущая сила (э. д. с). Направление ее определяют, пользуясь известным правилом правой руки. При этом ток, проходящий по проводникам якоря от источника энергии, направлен встречно индуцируемой э. д. с. Напряжение Uд, подведенное к двигателю, уравновешивается э. д. с., наводимой в обмотке якоря, и падением напряжения в обмот­ках двигателя:

где I — ток электродвигателя; rд — эквивалентное сопротивление обмоток двигателя.
Значение э. д. с. Е пропорционально магнитному потоку и частоте вращения, с которой проводники пересекают магнитные силовые линии, т. е.

где С1 — коэффициент, учитывающий конструктивные особенности двигателя (число пар полюсов, число активных проводников обмотки якоря и число параллельных ветвей обмотки якоря) и размерности величин, входящих в формулу; Ф — магнитный поток; n — частота вращения якоря двигателя. Тогда

Эта формула позволяет определить зависимость между частотой вращения и магнитным потоком при постоянном значении приложенного напряжения. Эквивалентное сопротивление обмоток двигателя невелико и составляет обычно менее одной десятой Ома. Поэтому без ощутимой ошибки можно считать, что n ? Uд : C1Ф.
Следовательно, частоту вращения двигателя постоянного тока можно регулировать, изменяя подводимое к нему напряжение (прямая пропорциональность) или магнитный поток возбуждения (обратная пропорциональность) . Оба способа регулирования частоты вращения применяются на электровозах.
Как зависит вращающий момент от тока якоря? Если подключить проводники обмотки якоря двигателя к электрической сети, то проходящий по ним ток, взаимодействуя с магнитным полем полюсов, создаст силы, действующие на каждый проводник с током. В результате совместного действия этих сил создается вращающий момент М, пропорциональный току якоря и магнитному потоку полюсов Ф, т. е.

где Cм — коэффициент, который учитывает размерность величин, входящих в формулу, число проводников обмотки якоря и другие параметры двигателя.
Из этой формулы видно, что вращающий момент не зависит от подведенного напряжения.
Чтобы построить тяговую характеристику двигателя постоянного тока, необходимо установить, как изменяются частота вращения n и момент М в зависимости от тока при разных способах возбуждения двигателей. С увеличением нагрузки двигателей, например в случае преодоления подъема, при неизменном напряжении Uд будет возрастать и ток якоря, так как, чтобы преодолеть дополнительную нагрузку, двигатель должен развивать большую силу тяги, а следовательно, и мощность (как известно, Р= UдI).
Для двигателей с параллельным возбуждением можно считать, что ток возбуждения не изменяется с изменением нагрузки. Следовательно, не изменяется и магнитный поток. Так как сопротивление rд обмотки якоря невелико, то в соответствии с формулой (3) будет незначительно возрастать произведение Irд при постоянных Uд и Ф. Это значит, что частота вращения двигателя с параллельным возбуждением при увеличении нагрузки несколько уменьшается (рис. 13, а), а вращающий момент возрастает пропорционально увеличению тока, что графически изображается прямой линией, проходящей через начало координат.
Примерно такие же характеристики будут иметь двигатели с независимым возбуждением, если не изменяется ток возбуждения.

Рассмотрим те же характеристики для двигателя с последовательным возбуждением (см. рис. 12, б). У такого двигателя магнитный поток зависит от нагрузки, так как по обмотке возбуждения проходит ток якоря. Частота вращения якоря, как видно из формулы (4), обратно пропорциональна потоку и при увеличении тока якоря I, а значит и магнитного потока Ф, резко уменьшается (рис. 13, б). Вращающий момент двигателя, наоборот, резко возрастает, так как одновременно увеличиваются ток якоря и зависящий от него магнитный поток возбуждения.
В случае небольших нагрузок магнитный поток возрастает пропорционально току, а вращающий момент, как это следует из формулы (5),— пропорционально квадрату тока якоря. Если нагрузка увеличивается значительно, ток двигателя возрастет до такой степени, что наступит насыщение его магнитной системы. Это приведет к тому, что частота вращения будет снижаться уже в меньшей степени. Но тогда начнет более интенсивно возрастать ток, а значит, и потребляемая из сети мощность. При этом скорость движения поезда несколько стабилизируется. Зависимости частоты вращения якоря n, вращающего момента М и коэффициента полезного действия ? от потребляемого двигателем тока I называют электромеханическими характеристиками на валу тягового двигателя при неизменном напряжении Uд , подводимом к тяговому двигателю, и постоян­ной температуре обмоток 115°С (по ГОСТ 2582—81).
По электромеханическим характеристикам двигателя можно построить его тяговую характеристику. Для этого берут ряд значений тока и определяют по характеристикам соответствующие им частоту вращения и вращающий момент. По частоте вращения двигателя несложно подсчитать скорость движения поезда, так как известны передаточное число i редуктора и диаметр D круга катания колесной пары:

Читать еще:  Двигатель 42130н инжектор троит

Поскольку в теории тяги пользуются размерностью частоты вращения якоря тягового электродвигателя, выраженной в об/мин, а скорость движения поезда измеряют в км/ч, то формула (6) с учетом коэффициента согласования этих размерностей принимает вид

Зная вращающий момент на валу двигателя, а также потери при передаче момента от вала тягового двигателя к колесной паре, которые характеризуют к. п. д. передачи можно получить и силу тяги, развиваемую одной, а затем и всеми колесными парами электровоза:

где Nкд — число тяговых двигателей локомотива или движущих колесных пар.
По полученным данным строят тяговую характеристику (см. рис. 11).
На электрических железных дорогах в качестве тяговых в подавляющем большинстве случаев используют двигатели постоянного тока с последовательным возбуждением, обладающие мягкой тяговой характеристикой. Такие двигатели, как отмечалось выше, при больших нагрузках вследствие снижения скорости потребляют меньшую мощность из системы электроснабжения.
Тяговые двигатели последовательного возбуждения имеют и другие преимущества по сравнению с двигателями параллельного возбуждения. В частности, при постройке тяговых двигателей устанавливают допуски на точность изготовления, на химический состав материалов для двигателей и т. п. Создать двигатели с абсолютно одинаковыми характеристиками практически невозможно. Вследствие различия характеристик тяговые двигатели, установленные на одном электровозе, при работе воспринимают неравные нагрузки. Более равномерно нагрузки распределяются между двигателями последовательного возбуждения, так как они имеют мягкую тяговую характеристику.
Однако двигатели последовательного возбуждения имеют и весьма существенный недостаток — электровозы с такими двигателями склонны к боксованию, иногда переходящему в разносное. Этот недостаток особенно резко проявился после того, когда масса поезда стала ограничиваться расчетным коэффициентом сцепления. Жесткая характеристика в значительно большей мере способствует прекращению боксования, так как в этом случае сила тяги резко снижается даже при небольшом скольжении и имеется больше шансов на восстановление сцепления. К недостаткам тяговых двигателей последовательного возбуждения относится и то, что они не могут автоматически переходить в режим электрического торможения: для этого необходимо предварительно изменить способ возбуждения тягового двигателя.

3. Тяговые электрические двигатели, их особенности и конструкция

Какому двигателю отдать предпочтение?

В настоящее время наибольшее распространение получили электрические двигатели двух видов: переменного тока — трехфазные асинхронные и постоянного тока — коллекторные с различными способами возбуждения. Какой же из них лучше использовать на электровозе?

Двигатели, которые могут быть использованы как тяговые, должны удовлетворять, как минимум, двум требованиям. Прежде всего необходимо иметь возможность регулировать в широких пределах их частоту вращения, а следовательно, и скорость движения поезда. Это позволяет машинисту устанавливать ту или иную скорость в зависимости от состояния пути, указаний путевых сигналов, временных ограничений скорости и других причин. Кроме того, необходимо также иметь возможность регулировать в широком диапазоне силу тяги (вращающий момент). Так, двигатели электровоза должны обеспечивать значительную силу тяги во время трогания поезда, его разгона, при преодолении крутых подъемов и т. п. и снижать ее в более легких условиях движения.

С точки зрения организации движения, казалось бы, желательно, чтобы поезда независимо от изменения сопротивления движению перемещались с постоянной скоростью или эта скорость снижалась бы незначительно. В этом случае зависимость между силой тяги F и скоростью движения υ представляла бы в прямоугольных осях координат вертикальную прямую линию 1, параллельную оси F, или слегка наклонную линию 2 (рис. 12, а). Зависимость между силой тяги, развиваемой двигателями локомотива, и скоростью его движения в науке о тяге поезда называют тяговой характеристикой и представляют ее графически, как показано на рис. 12, или в виде таблиц.


Рис. 12. Жесткая (а) и мягкая (б) тяговые характеристики

Изображенные на рис. 12, а тяговые характеристики являются жесткими. В случае жесткой характеристики мощность, потребляемая двигателями, например на крутых подъемах, возрастает пропорционально увеличению силы тяги (произведение υ1F1 значительно меньше υ2F2, рис. 12, а). Резкое увеличение потребляемой мощности приводит к необходимости повышения мощности — как самих двигателей, так и тяговых подстанций, увеличения сечения контактной подвески, что связано с затратами денежных средств и дефицитных материалов. Избежать этого можно, обеспечив характеристику двигателя, при которой с увеличением сопротивления движению поезда автоматически снижалась бы его скорость, т. е. так называемую мягкую характеристику (рис. 12, б). Она имеет вид кривой, называемой гиперболой. Двигатель с такой тяговой характеристикой работал бы при неизменной мощности (υ1F1 = υ2F2). Однако при движении тяжелых составов на крутых подъемах, когда необходима большая сила тяги, поезда перемещались бы с очень низкой скоростью, тем самым резко ограничивая пропускную способность участка железной дороги. Примерно такой характеристикой обладают тепловозы, так как мощность их тяговых двигателей ограничена мощностью дизеля. Это относится и к паровой тяге, при которой мощность ограничивается производительностью котла.

Мощность, развиваемая тяговыми двигателями электровоза, практически не ограничена мощностью источника энергии. Ведь электровоз черпает энергию через контактную сеть и тяговые подстанции от энергосистем, обычно обладающих мощностями, несоизмеримо большими мощности электровозов. Поэтому при создании тяговых двигателей электровозов стремятся получить характеристику, показанную на рис. 12, б штриховой линией. Электровоз, оборудованный двигателями с такой характеристикой, может развивать значительную силу тяги при сравнительно высокой скорости. Конечно, мощность, потребляемая тяговыми двигателями в условиях высоких скоростей, повышается (υ2‘F2 несколько больше υ2F2, но это не приводит к резким перегрузкам питающей системы.

Трехфазные асинхронные двигатели самые распространенные. Достоинства их трудно переоценить: простота устройства и обслуживания, высокая надежность, низкая стоимость, несложный пуск. Но, как известно, частота вращения асинхронного двигателя почти постоянна, не зависит от нагрузки; она определяется частотой подводимого тока и числом пар полюсов двигателя. Поэтому регулировать частоту вращения таких двигателей, а следовательно, и скорость движения поездов можно только изменением частоты питающего тока и числа пар полюсов, что трудно осуществить. Кроме того, как уже отмечалось выше, для питания таких двигателей требуется устраивать сложную контактную сеть. Поэтому асинхронные двигатели до недавнего времени почти не применяли на электровозах.

Благодаря развитию полупроводниковой техники оказалось возможным создать преобразователи однофазного переменного тока в переменный трехфазный и регулировать их частоту. Это позволило построить электровозы, на которых в качестве тяговых используются трехфазные асинхронные двигатели. Подробнее о таких электровозах будет рассказано ниже. Отметим, что абсолютно жесткой характеристикой (см. рис. 12, а) обладает синхронный двигатель.

Посмотрим, в какой степени отвечают требованиям, предъявляемым к тяговым двигателям, электрические машины постоянного тока. Напомним, что эти машины — генераторы и двигатели — различаются по способу их возбуждения.

Обмотки возбуждения могут быть включены параллельно обмотке якоря (рис. 13, а) и последовательно с ней (рис. 13, б). Соответственно такие двигатели называют двигателями с параллельным возбуждением (устаревшее название — шунтовые) и последовательным (сериесные). Используют также двигатели, у которых имеются две обмотки возбуждения — параллельная и последовательная, т. е. смешанное возбуждение. Их так и называют: двигатели смешанного возбуждения. Если обмотки включены согласно, т. е. создаваемые ими магнитные потоки складываются (рис. 13, в), то такие двигатели называют двигателями согласного возбуждения (компаундные); если потоки вычитаются, то имеем двигатели встречного возбуждения (противокомпаундные). Применяют и независимое возбуждение: обмотка возбуждения питается от постороннего источника энергии (рис. 13, г).


Рис. 13. Схемы, поясняющие способы возбуждения двигателей постоянного тока

Чтобы оценить возможности регулирования частоты вращения двигателя постоянного тока, напомним, что при вращении в магнитном поле проводников обмотки якоря двигателя в них индуктируется электродвижущая сила (э. д. с). Направление э. д. с. определяют, пользуясь известным правилом правой руки. Ток, проходящий по проводникам якоря от источника энергии, направлен навстречу индуктируемой э. д. с., и поэтому ее применительно к двигателям называют иногда противо- э. д. с. Следовательно, напряжение U, приложенное к якорю двигателя, в любое мгновение должно быть больше индуктируемой в его обмотке суммарной э. д. с. Е. На основании закона равновесия электродвижущих сил можно написать:

где I — ток якоря; r — сопротивление обмотки якоря.

Значение э. д. с. Е пропорционально значениям магнитного потока и скорости, с которой проводники пересекают магнитные силовые линии, т. е.

где с — коэффициент, учитывающий параметры двигателя (его размеры, число пар полюсов, число проводников обмотки якоря и т. п.) и размерности величин, входящих в формулу; Ф — магнитный поток; n — частота вращения якоря двигателя.

Формула (2) определяет зависимость между частотой вращения и током якоря при постоянном значении приложенного напряжения. Сопротивление обмотки якоря невелико и составляет обычно несколько сотых долей ома. Поэтому без ощутимой ошибки можно считать, что n ≈ U: (сФ). Следовательно, частоту вращения двигателей постоянного тока можно регулировать, изменяя подводимое к ним напряжение (прямая пропорциональность) или магнитный поток возбуждения (обратная пропорциональность). Оба способа регулирования частоты вращения применяются на электровозах.

Установим, как зависит вращающий момент от тока якоря. Если подключить проводники обмотки якоря двигателя к электрической сети, то проходящий по ним ток, взаимодействуя с магнитным полем полюсов, создаст силы, действующие на каждый проводник с током. В результате совместного действия этих сил создается вращающий момент М, пропорциональный току якоря и магнитному потоку полюсов Ф, т. е.

Читать еще:  Duster 2015 температура двигателя

где см — коэффициент, который учитывает размерность величин, входящих в формулу, число проводников обмотки якоря и другие параметры двигателя.

Из формулы (3) видно, что вращающий момент не зависит от подведенного напряжения.

Чтобы построить тяговую характеристику двигателя постоянного тока, необходимо установить, как изменяются частота вращения n и момент М в зависимости от тока при разных способах возбуждения двигателей. С увеличением нагрузки двигателей, например в случае преодоления подъема при неизменном напряжении U, будет возрастать и ток якоря, так как, чтобы преодолеть дополнительную нагрузку, двигатель должен развивать большую силу тяги, а следовательно, и мощность (как известно, Р = UI).

Для двигателей с параллельным возбуждением можно считать, что ток возбуждения не изменяется с изменением нагрузки. Следовательно, не изменяется и магнитный поток * . Так как сопротивление r обмотки, как уже отмечалось, невелико, то в соответствии с формулой (1) будет незначительно, возрастать произведение Ir при постоянных U и Ф. Это значит, что частота вращения двигателя с параллельным возбуждением при увеличении нагрузки несколько уменьшается (рис. 14, а), а вращающий момент возрастает пропорционально увеличению тока, что графически изображается прямой линией, проходящей через начало координат.

* ( В действительности магнитный поток немного уменьшается вследствие размагничивающего действия реакции якоря.)


Рис. 14. Электромеханические характеристики двигателей с параллельным (а) и последовательным (б) возбуждением

Примерно такие же характеристики будут иметь двигатели с независимым возбуждением, если не изменяется ток возбуждения.

Рассмотрим те же характеристики для двигателя с последовательным возбуждением (см. рис. 13, б). У такого двигателя магнитный поток зависит от нагрузки, так как по обмотке возбуждения проходит ток якоря. Частота вращения якоря, как видно из формулы (2), обратно пропорциональна потоку и при увеличении тока якоря I, а значит, и магнитного потока Ф резко уменьшается (рис. 14, б). Вращающий момент двигателя, наоборот, резко возрастает, так как одновременно увеличиваются ток якоря и зависящий от него магнитный поток возбуждения.

В случае небольших нагрузок магнитный поток возрастает пропорционально току, а вращающий момент, как это следует из формулы (3), пропорционально квадрату тока якоря. Если нагрузка увеличится значительно, ток двигателя возрастет до такой степени, что наступит насыщение его магнитной системы. Это приведет к тому, что частота вращения двигателя будет снижаться уже в меньшей степени. Но тогда начнет более интенсивно возрастать ток, а значит, и потребляемая из сети мощность. При этом скорость движения поезда несколько стабилизируется.

Зависимость частоты вращения n, а также зависимость вращающего момента М от тока якоря I и коэффициента полезного действия η называют электромеханическими характеристиками на валу тягового двигателя при неизменном напряжении U, подводимом к тяговому двигателю.

По электромеханическим характеристикам двигателя можно построить его тяговую характеристику. Для этого берут ряд значений тока и определяют по характеристикам соответствующие им частоту вращения и вращающий момент двигателя. По частоте вращения несложно подсчитать скорость движения поезда, так как известны передаточное число редуктора и диаметр круга катания колесной пары. Зная вращающий момент, подсчитывают силу тяги, развиваемую одной, а затем и всеми колесными парами электровоза. По полученным данным строят тяговую характеристику. Но и без этого построения очевидно, что двигатель с последовательным возбуждением имеет мягкую характеристику. Поэтому на электрических железных дорогах в качестве тяговых в подавляющем большинстве случаев используют двигатели постоянного тока с последовательным возбуждением.

Тяговые двигатели последовательного возбуждения имеют и другие преимущества по сравнению с двигателями параллельного возбуждения. Так, при постройке тяговых двигателей устанавливают допуски на точность изготовления, на химический состав материалов для двигателей и т. п. Создать двигатели с абсолютно одинаковыми характеристиками практически невозможно. Вследствие различия характеристик тяговые двигатели, установленные на одном электровозе, при работе воспринимают неравные нагрузки. Более равномерно нагрузки распределяются между тяговыми двигателями последовательного возбуждения, из-за того что они имеют мягкую тяговую характеристику.

Таким образом, мы отметили ряд преимуществ, обеспечиваемых мягкой характеристикой двигателя последовательного возбуждения. С еще одним важным преимуществом такой характеристики мы познакомимся при описании пуска тяговых двигателей. Как видим, двигатели последовательного возбуждения обладают множеством положительных свойств. Но они имеют и весьма существенный недостаток — электровозы с двигателями последовательного возбуждения склонны к боксованию, иногда переходящему в разносное. Этот недостаток особенно резко проявился после того, когда масса поезда стала ограничиваться не мощностью тяговых двигателей, а расчетным коэффициентом сцепления. Жесткая характеристика в значительно большей мере способствует прекращению боксования, так как в этом случае сила тяги резко снижается даже при небольшом скольжении и имеется больше шансов на восстановление сцепления. К недостаткам тяговых двигателей последовательного возбуждения относится также то, что эти двигатели не могут автоматически переходить в режим электрического торможения.

0сновные технические данные и характеристики тяговых двигателей

Описание электропоездов и электровозов, расписание поездов, фотографии

§ 16. 0сновные технические данные и характеристики тяговых двигателей

В отличие от большинства электрических машин общепромышленного назначения тяговые двигатели работают в самых разнообразных эксплуатационных условиях и режимах. Так, двигатель подвержен значительным динамическим усилиям, воздействующим на него со стороны пути. Наибольшее динамическое воздействие испытывает двигатель, если он опирается непосредственно на ось движущейся колесной пары (опорно-осевое подвешивание) .

При опорно-рамном подвешивании, которое применено на электровозе ЧС2Т, динамические усилия, воспринимаемые двигателем, существенно ниже. Тем не менее даже в этом случае уровень динамических ускорений тяговых двигателей, жестко закрепленных на раме тележки, достигает l,25g (д — ускорение земной силы тяжести).

Условия работы тяговых двигателей усложняются также вследствие изменения в широком диапазоне температуры, влажности воздуха, отсутствия возможности полностью исключить попадание в машину снега, влаги, пыли.

Резкие колебания напряжения на зажимах тягового двигателя, широкие пределы изменения нагрузки и частоты вращения якоря, особенно при нарушении условий сцепления колес с рельсами, ограниченные габариты размещения при ширине колеи 1520 мм и диаметре колес 1250 мм наряду с указанными выше особенностями работы электровоза необходимо учитывать при проектировании, изготовлении и эксплуатации тяговых электрических машин.

Наиболее полно этим требованиям удовлетворяют тяговые двигатели постоянного тока последовательного возбуждения, допускающие большие перегрузки и устойчиво работающие при резких колебаниях напряжения в контактной сети. Кроме того, при двигателях с последовательным возбуждением обеспечивается незначительное расхождение нагрузок в параллельных цепях. Поэтому подавляющее большинство современных тяговых двигателей постоянного тока, в том числе и на электровозе ЧС2Т, имеет последовательное возбуждение.

Основные технические данные тягового двигателя АЕ4846с1Т, установленного на электровозе ЧС2Т, следующие (для сравнения

приведены также данные тягового двигателя АЬ4846еТ эл воза ЧС2):

Мощность, кВт . . •. •. 770 700

Ток якоря, А. 545 495

Частота вращения якоря, об/мин. 665 680

Мощность, кВт . 68« 618

Ток якоря, А. 480 435

Частота вращения якоря, об/ыпн . 705 720

Максимальная частота вращения якоря, об/мин . 1230 1230

Номинальное напряжение на коллекторе, В . . 1500 1500

Количество охлаждающего воздуха, м3/с . . . 2,0 2,0

Масса двигателя, кг. 5250 5250

Сопротивление обмоток при 20°С. Ом:

якоря . 0,032 0,0362

дополнительных полюсов. 0,0127 0,0139

главных полюсов. 0,0232 0,0269

обмоток якоря . В В

катушек главных и дополнительных полюсов . Р р

При напряжении на коллекторе 1500 В изоляция между то-коведущими частями двигателя и корпусом рассчитана на напряжение контактной сети, т. с. на 3000 В. При испытаниях изоляция обмоток тягового двигателя должна выдержать напряжение 9400 В в течение 1 мни.

Как следует из приведенных данных, мощность тягового двигателя электровоза ЧС2Т на 10% превышает мощность тягового двигателя, установленного на электровозе ЧС2. Необходимость повышения мощности вызвана требованиями эксплуатации, прежде всего увеличением числа вагонов скоростных экспрессов с максимальной скоростью движения 160 км/ч. Как известно, число Вагонов поезда «Аврора» на линии Москва—Ленинград при электровозе ЧС2 не может быть больше десяти по условиям нагревания тяговых двигателей. Использование электровозов ЧС2Т позволяет, как показали испытания, увеличить число вагонов до 12.

Повышение мощности двигателя достигнуто практически без изменения конструкции машины путем некоторого увеличения сечения меди обмоток якоря и катушек полюсов. Однако при этом размеры паза не изменены, уменьшена толщина изоляции, благодаря чему улучшен отвод тепла от обмоток к сердечнику.

Отличительной особенностью тягового двигателя АЬ4846с1Т является применение шихтованных вставок между сердечниками полюсов и корпусом остова; выполнение сердечника дополнительного полюса из листовой стали и установка диамагнитных прокладок под сердечник дополнительного полюса. Все это спо-

собствует повышению коммутационной устойчивости тяговых двигателей при неустановившихся режимах. Учитывая, что для надежной работы тяговых машин коммутация при переходных режимах имеет решающее значение, а также то, что шихтованные вставки впервые применены на тяговых двигателях постоянного тока, рассмотрим подробнее работу двигателей в этих режимах.

Основной магнитный поток Ф, создаваемый обмотками главных полюсов, при установившемся режиме зависит от магнитодвижущей силы, которая при последовательном возбуждении прямо пропорциональна току якоря. В переходных режимах, вызываемых резкими колебаниями напряжения в сети, нарушением и восстановлением контакта токоприемника с проводом, прекращением боксования, переключениями в схеме и т. д., происходит изменение тока и соответственно потока. Как известно, изменяющийся магнитный поток, пронизывающий магпнтопровод, индуктирует в нем электродвижущую силу (э. д. с), которая вызывает вихревые токи. Последние стремятся воспрепятствовать изменениям, которые их вызывают. Следовательно, собственное поле вихревых токов старается ослабить изменение основного магнитного поля, что при переходном режиме проявляется в размагничивающем действии вихревых токов. В тяговом двигателе это вызывает запаздывание изменения магнитного потока относительно изменения тока, что сопровождается броском тока, в ряде случаев значительно превышающим установившееся значение. Коммутация двигателей осложняется из-за бросков тока и вследствие влияния вихревых токов па поток дополнительных полюсов.

Читать еще:  1pe40qmb что за двигатель

Магнитное поле дополнительных полюсов, через катушки которых протекает ток двигателя, должно компенсировать магнитное поле коммутируемой секции якоря. В случае равенства э. д. с, наводимой в короткозамкнутой секции магнитным потоком дополнительных полюсов, и реактивной э. д. с. в той же секции плотность тока иод щеткой распределяется равномерно и обеспечиваются наиболее благоприятные условия коммутации.

Значение реактивной э. д. с. в короткозамкнутой секции якоря определяется нагрузкой двигателя и изменяется пропорционально току, т. е. в переходных режимах возрастает. Однако поток дополнительного полюса и, следовательно, коммутирующая э. д. с. в этом случае отстают по времени от тока, в результате чего возникает некомпенсированная э. д. с, приводящая к вспышке под щетками. Запаздывание магнитного потока дополнительных полюсов при неустановившемся режиме вызывается действием вихревых токов в магнитопроводе аналогично рассмотренному случаю для потока главных полюсов.

Рассмотрим осциллограмму тока якоря /я и магнитного потока Фд дополнительного полюса двигателя АЬ4846еТ при восстановлении напряжения через 0,87с после внезапного его снятия (рис. 31). Масштабы тока и потока во время опыта были подобраны таким образом, чтобы в установившемся режиме их ординаты совпадали. В другом масштабе кривые тока и потока пред-

Рис. 31. Осциллограмма переходных процессов в тяговом двигателе при потере—восстановлении напряжения

ставляют собой изменение во времени соответственно реактивной и коммутирующей э. д. с. Разность между ними определяет некомпенсированную э. д. с. Опыт потери — восстановления напряжения 1500 В на двигателе (3000 В в сети) проведен при часовом токе 495 А, полном возбуждении и частоте вращения 694 об/мии. Как видно из

рис. 31, ток достиг 1260 А, что в 2,55 раза превышает установившееся значение. Поток дополнительного полюса значительно отстает от тока, вызывая существенную недокомпеисапию реактивной э. д. с. и соответственно вспышку под щеткой.

Аналогичный опыт с двигателем АЬ4846с1Т электровоза ЧС2Т, имеющим шихтованные вставки и диамагнитную прокладку для дополнительного полюса, проведен при часовом токе этого двигателя 545 А (см. рис. 31). При восстановлении напряжения ток в 2,2 раза превысил установившееся значение (1200 А), а главное — переходной процесс закончился быстрее, недокомпепсиро-ванная э. д. с. при этом существенно меньше, что улучшает коммутацию: вспышка под щеткой имеет меньшую интенсивность.

Снижение вероятности появления вспышки под щеткой повышает коммутационную устойчивость двигателя против возможного перекрытия (переброса) на коллекторе между двумя щеткодержателями и возникновения кругового огня.

Увеличение мощности и некоторые изменения в конструкции двигателя АЬ4846оТ, обеспечивающие повышение его коммутационной устойчивости при переходных режимах, не привели к изменению электромеханических характеристик. Изменены лишь номинальные параметры двигателя — сила тяги и частота вращения часового и продолжительного режимов: сила тяги увеличена на 12% при снижении частоты вращения на 2%.

Сила тяги и тяговые характеристики локомотивов — Характеристики тяговых электродвигателей постоянного тока

Содержание материала

  • Сила тяги и тяговые характеристики локомотивов
  • Сцепление ведущих колес локомотива с рельсами
  • Физическая природа сцепления ведущих колес локомотива с рельсами
  • Коэффициент сцепления и методы его оценки
  • Тяговая характеристика автономного локомотива
  • Тяговые свойства тепловозного дизеля
  • Характеристики электрических передач тепловозов
  • Построение тяговой характеристики тепловоза по характеристикам электродвигателей
  • Опытные тяговые характеристики тепловозов с электрической передачей
  • Опыт создания тепловозов с электрической передачей переменного тока
  • Тяговые характеристики тепловозов с гидравлической передачей
  • Опытные тяговые характеристики тепловозов с гидравлической передачей
  • Тяговые характеристики тепловозов с механической передачей
  • Характеристики тяговых электродвигателей постоянного тока
  • Регулирование скорости движения и тяговые характеристики эпс постоянного тока
  • Тяговые характеристики элекроподвижного состава постоянного тока
  • Характеристики электроподвижного состава переменно-постоянного тока
  • Тяговые свойства электровозов с бесколлекторными электродвигателями

Тяговые характеристики электроподвижного состава
Характеристики тяговых электродвигателей постоянного тока электроподвижного состава
На электровозах и электропоездах постоянного и переменно-постоянного тока применяют тяговые электродвигатели постоянного тока. Форма тяговых характеристик электроподвижного состава (э.п.с.), в основном, определяется электромеханическими характеристиками тяговых электродвигателей (ТЭД), приведенных к валу двигателя, а именно: nд =f(Iд) — частоты вращения якоря ТЭД от его тока при заданном напряжении питания от контактной сети UKC; Мд =f(I ) — вращающего момента на якоре ТЭД от тока; ηд = f(Iд) — к.п.д. тягового электродвигателя от тока якоря. Электромеханические характеристики тяговых электродвигателей э.п.с. получают при стендовых испытаниях на заводе-изготовителе.
При тяговых расчетах электромеханические характеристики тягового электродвигателя обычно приводят к ободу колес колесной пары электровозов и электропоездов и получают электромеханические характеристики колесно-моторного блока [5]:
V=f(Iд) — скорости движения колесной пары э.п.с. от тока якоря ТЭД;

F = f(Iд) — касательной силы тяги колесной пары э.п.с. от тока якоря ТЭД; ηэ=f(Iд)- К.П.Д. колесно-моторного блока э.п.с. от тока якоря ТЭД.
При пересчете электромеханических характеристик тяговых электродвигателей на характеристики колесно-моторных блоков используют следующие формулы:

  1. скорость движения колесной пары э.п.с., км/ч:

(2.34)
где С — постоянный коэффициент для данной серии локомотива:

где С8 — конструктивная постоянная тягового электродвигателя; μ — передаточное число тяговых редукторов колесной пары; DK — диаметр колес колесной пары, м;

  1. касательная сила тяги на ободе колес колесной пары, Н:

(2.35)
где ΔF — потери силы тяги, вызванные магнитными и механическими потерями в колесно-моторном блоке, Н:

где ΔΡΜaгн — потери мощности в магнитной системе ТЭД, кВт; ∆Рмех — механические потери мощности в якорных подшипниках и щеточном аппарате ТЭД, кВт; ∆Р — потери мощности в тяговых редукторах колесной пары и моторно-осевых подшипниках ТЭД, кВт; V — скорость движения, км/ч;

  1. коэффициент полезного действия колесно-моторного блока э.п.с.


где Δρπ — потери в тяговых редукторах и моторно-осевых подшипниках в процентах от подведенной мощности, %. Величина Δρπ определяется по графикам Δρπ = f(Р1) [12].
Необходимо отметить, что форма электромеханических характеристик тяговых электродвигателей и колесно-моторных блоков э.п.с. напрямую зависит от принятой системы возбуждения двигателей.
На рис. 37 представлены схемы основных систем возбуждения тяговых электродвигателей э.п.с.: последовательного (рис. 37, а), параллельного (рис. 37, б), смешанного возбуждения при согласном (рис. 37, в) и встречном (рис. 37, г) включении последовательной и параллельной обмоток и независимого возбуждения (рис. 37, б). Расчетные тяговые характеристики электровозов стяговыми электродвигателями, имеющими вышеперечисленные системы возбуждения, приведены на рис. 38. Из кривых FK =f(V), представленных на рис. 38, следует, что тяговая характеристика электровоза с двигателями последовательного возбуждения (кривая 1) наиболее приближена к идеальной тяговой характеристике локомотива с электрическим приводом колесных пар (кривая 4) и позволяет наиболее полно использовать мощность тягового электродвигателя в эксплуатации. Тем не менее в зоне малых скоростей движения электровоза, когда тяговые электродвигатели работают при больших токах якоря /д, наблюдается увеличение жесткости характеристик локомотива. Жесткость характеристик электродвигателей и электровоза в целом определяется темпом изменения силы тяги FK от скорости V. Тяговые характеристики локомотивов называют жесткими при резком изменении функции FK=f(V) (например, кривая 2 на рис. 38) и мягкими при плавном изменении кривой FK=f(V).
В свою очередь, тяговые характеристики электровозов с электродвигателями параллельного, смешанного и независимого возбуждения имеют более высокую степень жесткости, чем при последовательном возбуждении.
Вышеперечисленные системы возбуждения тяговых электродвигателей обладают целым рядом достоинств и недостатков и нашли практическое применение на различных сериях электровозов.
Так, для электровозов постоянного тока с контакторно-реостатным управлением признано целесообразным [5] применение тяговых электродвигателей с системами последовательного или смешанного возбуждения с мягкими тяговыми характеристиками.

Рис. 37. Схемы систем возбуждения тяговых электродвигателей электроподвижного состава: а — последовательного; б — параллельного; в — смешанного при согласном включении обмоток; г — смешанного при встречном включении обмоток; д — независимого возбуждения


Рис. 38. Расчетные тяговые характеристики электровозов с электродвигателями, имеющими разные системы возбуждения: 1 — при последовательном; 2 — при параллельном и независимом; 3 — при смешанном; 4 — идеальная характеристика

На электровозах переменно-постоянного тока и э.п.с. постоянного тока с импульсным регулированием предпочтительнее оказалось использование тяговых двигателей с независимым возбуждением и
жесткими характеристиками. Такие характеристики тяговых электродвигателей позволяют уменьшить интенсивность процессов боксования локомотива и, соответственно, увеличить критические веса водимых поездов. Широкое применение силовых полупроводников на э.п.с. позволяет несколько сгладить серьезные недостатки независимого возбуждения ТЭД — сильный разброс токов нагрузки между параллельно работающими ТЭД локомотива и чувствительность к колебаниям напряжения в контактной сети.
Сравнительные испытания электровозов ВЛ80р с последовательным возбуждением тяговых электродвигателей и ВЛ80Р с независимым возбуждением с поездами, проведенные ВНИИЖТом [7,8], показали, что коэффициент тяги электровозов ВЛ80рн на 8,4 % выше, чем ВЛ80р; во время разгона, т.е. в диапазоне высоких токовых нагрузок жесткость тяговых характеристик электровозов ВЛ80РН и ВЛ80р сближается и их тяговые возможности почти не отличаются.

Ссылка на основную публикацию
Adblock
detector