Холодная прокрутка газотурбинного двигателя

Холодная прокрутка газотурбинного двигателя

КОМПРЕССОРНАЯ СТАНЦИЯ ГПА-Ц-16 НЕИСПРАВНОСТИ ВИДЕО

Данный сайт ориентирован для сотрудников компаний, занимающихся транспортировкой газа по магистральным газопроводам, а также для тех, кто только собирается начать свою трудовую деятельность в газовой промышленности. Тематика данного ресурса нацелена на обучение, проведение технической учебы, охрану труда, что обеспечивает нашу с Вами безопасность.
Если у Вас возникли вопросы и пожелания по работе нашего ресурса, вы всегда можете направить их через форму обратной связи. Ни одно обращение не останется без внимания.

Вниманию сотрудников, работающих с агрегатами ГПА-Ц-16.

Представляем новую площадку INFOKS ОБУЧЕНИЕ для изучения устройства и принципа действия оборудования компрессорной станции с данными типами ГПА.

Площадка является веб версией уже известной интерактивной программы Infoks, работающей без установки на любом устройстве.

Сейчас уже доступны разделы по темам: Общестанционные системы, ГПА-Ц-16 (двигатель НК-16-18СТ и нагнетатель НЦ-16/76-1,44).

Доступ к платформе — пожизненный.

Последние опубликованные материалы

Биполярные транзисторы. Назначение, вид…

Транзисторы предназначены для решения задач усиления и переключения электрических сигналов. Время бурного развития транзисторов – 50 – 80 годы прошлого столетия. В настоящее время следует признать, что транзисторы как отдельные.

Светодиоды

Светодиод – полупроводник, в котором при прохождении электрического тока создается световое излучение. Другое его название – светоизлучающий диод. Современные светодиоды предназначены для решения трёх основных задач: отображения состояния электронных устройств (в т.ч.

Стабилитроны

Стабилитроны (диоды Зенера) – особая разновидность диодов, предназначенная для формирования стабилизированного напряжения питания. ВАХ, графема стабилитрона и типовые характеристики представлены на рисунке 2.8. Обратите внимание, что рабочий ток стабилитрона втекает в .

Выпрямительные диоды. Назначение, характ…

Основное назначение полупроводниковых диодов выпрямление переменного тока. Существуют диоды других назначений, о которых будем говорить позже. Итак, диоды — это буквально двухэлектродные компоненты. Электроды имеют названия: анод и катод. Типовая графема.

Катушки индуктивности: назначение, ха…

Катушки индуктивности (КИ; индуктивность; индуктор; катушка) используются в электронных схемах нечасто: обычное их место в схемах преобразователей питания. Так называемые, высокочастотные катушки применяют в фильтрации напряжений питания чувствительных (аналоговых) компонентов. Общее.

Конденсаторы: назначение, характеристики…

Конденсаторы, как и резисторы, наиболее распространённые компоненты в принципиальных схемах. Их основное назначение – распределённая по электрической схеме фильтрация (сглаживание) пульсаций напряжений питания, а также использование как времязадающих элементов в.

Резисторы. Назначение, виды, характер…

Происхождение названия Резистор от латинского resisto – сопротивляюсь. На схемах обозначается латинской буквой R. При прохождении электрического тока через резистор он нагревается – рассеивает электрическую энергию в виде тепла. Можно.

Устройство и работа основных блоков двиг…

Проставка двигателя ГТД ДН80Л1 Проставка (рис.59) предназначена для подвода воздуха к ГТД из станционного воздуховода и для снижения уровня шума. В нее входят следующие функциональные блоки: переходники 1, 2, 3, 12; опора 4; диафрагма 5.

Кожух двигателя ГТД ДН80Л1

Кожух двигателя (рис. 58) выполнен теплозвукоизолирующим и предназначен для защиты машинного отделения от тепловыделения нагретых частей двигателя, а также для уменьшения шума, исходящего от двигателя, и состоит из кожуха газогенератора.

Рама и опоры двигателя ГТД ДН80Л1

Рама двигателя ГТД ДН80 Рама двигателя (рис. 57) предназначена для крепления двигателя и агрегатов, обслуживающих двигатель. Рама состоит из двух частей: рамы газогенератора 1 и рамы силовой турбины 2, которые представляют.

Коробки приводов двигателя ГТД ДН80Л1

Коробки приводов двигателя предназначены для передачи вращения от электростартеров ротору КНД при запуске, холодных и технологических прокрутках и для привода агрегатов, обеспечивающих работу двигателя. На двигателе расположены нижняя и выносная коробки .

Турбина силовая (СТ) двигателя ГТД ДН80…

Назначение и устройство турбины силовой двигателя ГТД ДН80Л1 Турбина силовая (рис.40) осевого типа. Предназначена для привода во вращение вала потребителя мощности. Турбина силовая (СТ) четырехступенчатая, состоит из: сопловых аппаратов; ротора; опорного венца. Ротор силовой турбины Ротор СТ .

Последние видео

Действия персонала при возникновении пожара

Организация и проведение работ в электроустановках

Испытания магистрального газопровода

Организация и проведение огневых работ на газовых объектах ПАО «Газпром»

Производство работ кранами-трубоукладчиками на линейной части магистральных газопроводов

Производство земляных работ экскаватором, булдозером
Один из видов эффективного обучения является визуализация процессов, протекающих в технических устройствах. Предлагаем Вашему вниманию небольшой ролик работы приложения по визуализации внутренних процессов в оборудовании и устройствах компрессорной станции.
Скачать данное приложение можно в разделе программы для технической учебы
Посмотреть другие ролики из этого приложения можно в разделе обучающее видео

Облако тегов

  • Вы здесь:
  • Главная

Подписка на новости сайта позволит всегда быть в курсе новых публикаций на сайте

Предупреждение об использовании файлов cookies на сайте Info KS

В соответствии с законами ЕС, поставщики цифрового контента обязаны предоставлять пользователям своих сайтов информацию о правилах в отношении файлов cookie и других данных. Администрация сайта должна получить согласие конечных пользователей из ЕС на хранение и доступ к файлам cookie и другой информации, а также на сбор, хранение и применение данных при использовании продуктов Google.

Файл cookie – файл, состоящий из цифр и букв. Он хранится на устройстве, с которого Вы посещаете сайт Info KS. Файлы cookie необходимы для обеспечения работоспособности сайтов, увеличения скорости загрузки, получения необходимой аналитической информации.

Сайт использует следующие cookie:

Необходимые для работы сайта: навигация, скачивание файлов. Происходит отличие человека от робота.

Файлы cookie для увеличения быстродействия и сбора аналитической информации. Они помогают администрации сайта понять взаимодействие посетителей сайтом, дают информацию о страницах, которые были посещены. Эта информация помогает улучшать работу сайта.

Рекламные cookie. В эти файлы предоставляют сведения о посещении наших страниц, данные о ссылках и рекламных блоках, которые Вас заинтересовали. Цель — отражать на страницах контент, наиболее ориентированный на Вас.

Читать еще:  Что такое тяговый двигатель из чего состоит

Если Вы не согласны с использованием нами файлов cookie Вашего устройства, пожалуйста покиньте сайт.

Продолжением просмотра сайта Info KS Вы даёте своё согласие на использование файлов cookie.

Особенности запуска авиационного ГТД

Смородникова А. В. Введение

Быстрое развитие конструкции авиационных газотурбинных двигателей (ГТД) и широкое их применение делают необходимым специальное изучение характеристик процесса запуска двигателей и совершенствования аппаратуры запуска. В авиации эти характеристики отражают степень готовности летательного аппарата к полету, а работа элементов системы запуска непосредственно влияет на безопасность полета, надежность работы и ресурс двигателя.

Общие понятия о процессе запуска

Для возможности использования любого двигателя по прямому назначению необходимо вывести его на минимальный режим устойчивой работы. Процесс вывода на этот режим, называемый режимом малого газа, и представляет собой запуск двигателя.

Запуск авиационного газотурбинного двигателя является неустановившимся процессом раскрутки ротора двигателя от неподвижного состояния в наземных условиях или от режима авторотации в полете до режима малого газа.

Для запуска двигателя, необходимо, чтобы рабочее тело было доведено до состояния, при котором возможно устойчивое протекании рабочего процесса. Рабочий процесс ГТД характерен непрерывным горением топливно-воздушной смеси в камере сгорания.

Устойчивое горение топливно-воздушной смеси, возможно только при непрерывном поступлении в камеру сгорания необходимого количества воздуха под некоторым избыточным давлением. Воздух в камеру сгорания подается компрессором:

Как видно из формулы (1), мощность, затрачиваемая на работу компрессора, зависит от расхода воздуха через двигатель, степени сжатия воздуха в компрессоре и коэффициента полезного действия. Чем больше расход воздуха через двигатель, степень сжатия воздуха и чем меньше коэффициент полезного действия компрессора, тем большая мощность нужна для вращения компрессора [1].

Классификация и основы устройства системы запуска

Для обеспечения надежного запуска двигателя требуется специальный комплекс агрегатов и устройств, размещаемых на двигателе и на летательном аппарате. Комплекс таких агрегатов и устройств совместно с соединенными коммуникациями различного рода и составляет систему запуска, или пусковую систему.

В систему запуска входят агрегаты и устройства, обеспечивающие предварительную раскрутку ротора двигателя; агрегаты для подачи топлива и воспламенения горючей смеси в камере сгорания; устройства, обеспечивающие устойчивую работу двигателя в процессе запуска; устройства, создающие необходимую последовательность и автоматичность работы системы запуска.

Тип системы запуска определяется типом агрегата предварительной раскрутки ротора двигателя и типом источника питания. В качестве агрегатов предварительной раскрутки чаще всего используют электростартеры и турбостартеры, работающие на различных видах топлива.

Источники питания могут быть бортовыми, установленными на самолете, или аэродромными.

Вес и габариты агрегатов системы запуска данного двигателя зависят от типа выбранной системы запуска и времени, в течение которого двигатель должен быть выведен на режим малого газа [2].

2.1. Электрические системы запуска

Электрические пусковые системы широко применяются для запуска различных турбореактивных и турбовинтовых двигателей благодаря, тому, что им свойственны простота управления и легкость автоматизации операции запуска, надежность в работе, простота и удобство обслуживания.

Для электрических систем запуска характерно значительное увеличение веса из-за увеличения мощности.

3. Пусковое устройство

Пусковое устройство предназначено для раскрутки ротора ГТД до частоты вращения, при которой обеспечивается надежное воспламенение топлива в камере сгорания и турбина ГТД начинает развивать положительную мощность на валу ротора ГТД, достаточную для дальнейшей самостоятельной раскрутки. Пусковое устройство является частью пусковой системы ГТД, включается и отключается по сигналам система автоматического управления (САУ) ГТД.

На большинстве ГТД пусковое устройство связано с ротором двигателя через кинематический привод и размещается на коробке приводов двигателя. Для однороторных двигателей применяется также прямой привод, когда пусковое устройство размещается в коке компрессора и непосредственно соединяется с ротором ГТД. Применение прямого привода пускового устройства позволяет уменьшить массу и сократить габариты двигателя и упростить его кинематическую схему.

На основе опыта проектирования, изготовления и эксплуатации пускового устройства можно определить предъявляемые к нему основные требования:

обеспечение раскрутки ротора ГТД (запуск, ложный запуск, холодная прокрутка, а также консервация и расконсервация) требуемой продолжительности и до необходимой частоты вращения во всех заданных условиях эксплуатации;

конструкция в виде отдельного законченного агрегата;

наличие устройства, обеспечивающего автоматическое соединение- рассоединение с ротором ГТД;

обеспечение безопасной эксплуатации;

наличие аварийных систем отключения при возникновении нерасчетных условий или параметров работы;

применение тех же марок горюче-смазочных материалов, что и в ГТД;

минимальные масса и габариты;

относительно низкая стоимость изготовления и обслуживания.

3.1.Основные типы пусковых устройств современных ГТД.

На современных ГТД, в основном, используются электрические, воздушные, гидравлические и турбокомпрессорные пусковые устройства (далее по тексту — стартеры).

На выбор типа пускового устройства значительное влияние оказывает тип источника энергии, имеющегося на борту ЛА, а также величина требуемой мощности пускового устройства и продолжительность запуска двигателя.

Электрические стартеры могут быть как постоянного, так и переменного тока. Однако, вследствие широкого использования в качестве бортового источника питания аккумуляторных батарей и более простой конструкции, большее распространение получили стартеры постоянного тока, особенно для небольших самолетов и вертолетов пассажирской, транспортной и вспомогательной авиации.

В настоящее время широко используются как электростартеры, так и стартеры- генераторы. Их область применения ограничивается величиной выходной мощностью 18. 20 кВт. Электрические стартеры постоянного тока нашли применение также и на многодвигательных летательных аппаратах (ЛА), где в качестве бортового источника питания используется вспомогательная газотурбинная генераторная электроустановка.

Воздушные стартеры широкое распространение получили на многодвигательных самолетах пассажирской и транспортной авиации, для надежного запуска которых требуется применение пусковых устройств с располагаемой мощностью более 20 кВт. Конструктивно стартер выполняется с воздушной турбиной. В качестве источников питания для воздушных стартеров применяется вспомогательная силовая установка (ВСУ) многоцелевого назначения, сжатый воздух от которой, кроме запуска двигателя, используется также для работы системы кондиционирования самолета.

Читать еще:  Вибрация двигателя на холостых передается на кузов вольво

4. Описание процесса запуска двигателя

4.1. Особенности процесса запуска в полете

Рабочий процесс ГТД характерен непрерывным горением топливно-воздушной смеси (ТВС) в камере сгорания. Устойчивое горение возможно только при непрерывном поступлении в камеру сгорания необходимого количества воздуха с некоторым избыточным давлением. Затрачиваемая на работу компрессора мощность, зависит от расхода воздуха через двигатель, степени-сжатия и КПД компрессора. Чем выше напористость и расход воздуха через компрессор и ниже КПД, тем большая мощность нужна для его вращения. По мере увеличения частоты вращения требуется все большая мощность.

Существует режим, когда турбина развивает мощность, достаточную для собственного вращения, а так же для вращения компрессора, агрегатов двигателя и преодоления механических потерь.

Для достижения этого режима двигателя к его ротору необходимо подводить мощность от постоянного источника энергии. Эта мощность осуществляется пусковым устройством-стартером.

При эксплуатации двигателя возможны случаи самопроизвольного или преднамеренного его выключения в полете. После прекращения горения топлива на любом режиме частота вращения ротора уменьшается. При этом часть энергии набегающего потока воздуха расходуется на вращение ротора, и самолет начинает испытывать дополнительное сопротивление.

Основной особенностью запуска двигателя в полете является наличие вращения ротора компрессора набегающим потоком-авторотация. Частота вращения роторов на авторотации зависит от скорости и высоты полета, загрузки ротора, конструктивных особенностей двигателя. Современные пусковые устройства обеспечивают запуск в полете как с подводом мощности от стартера, так и без подвода — в случае, когда мощность набегающего потока достаточно для вращения ротора двигателя с требуемой минимальной частотой [3].

4.1.2. Основные этапы запуска

Процесс запуска авиационного ГТД условно может быть разбит на три этапа.

На первом этапе запуска — с момента подключения стартера к ротору двигателя до момента воспламенения топливно-воздушной смеси (ТВС) в камере сгорания- раскрутка ротора двигателя ведется только стартером. Можно считать, что турбина двигателя вступает в активную работу с начала воспламенения ТВС в камере сгорания. В течение первого периода запуска расход и давление воздуха за компрессором высокого давления (КВД) увеличивается по мере увеличения числа оборотов ротора двигателя.

На втором этапе запуска — с момента воспламенения ТВС в камере сгорания до момента отключения стартера от ротора двигателя — раскрутка ведется одновременно стартером и турбиной. Пусковое устройство отключается от двигателя автоматически в момент выхода на определенную частоту вращения ротора, при которой турбина имеет необходимый избыток мощности для раскрутки ротора. Этот этап запуска характеризуется продолжительностью и максимальными тепловыми нагрузками на детали турбины.

На третьем этапе запуска — с момента отключения пускового устройства до выхода двигателя на режим малого газа — ротор двигателя раскручивается только турбиной.

Рис. 1. Этапы запуска ГТД, циклограмма запусков.

ТТ — температура газов за турбиной; щ -частота вращения ротора КВД;

GT -расход воздуха в камере сгорания

5. Обеспечение надежного запуска на земле

5.1. Основные причины ненадежного запуска двигателя на земле

В процессе запуска авиационный ГТД работает на довольно сложном неустановившимся режиме. Надежность запуска зависит от надежности и устойчивости протекания различных процессов в двигателе и элементов системы запуска.

Основные причины ненадежного запуска двигателя:

надежность может быть снижена из-за недостаточной располагаемой мощности пускового устройства или из-за неисправности отдельных элементов пусковой системы;

надежность может быть снижена из-за отклонений в программах подачи топлива и в подводе мощности пускового устройства;

устойчивость работы двигателя может быть нарушена при задержке воспламенения топлива в камере сгорания и т.д. [3].

Список литературы

Иноземцев А. А., Нихамкин М. А. и др. Основы конструирования авиационных двигателей и энергетических установок. Том V «Автоматика и регулирование авиационных двигателей и энергетических установок». — М.: Машиностроение, 2008. — 190 с.

Алабин М. А., Кац Б. М., Литвинов Ю. А. «Запуск авиационных газотурбинных двигателей» — М.: Машиностроение,1968. — 120 с.

Кац Б. М., Жаров Э. С., Винокуров В. К. Пусковые системы авиационных газотурбинных двигателей. -М.: «Машиностроение», 1976. — 220 с.

Воздушная система запуска малоразмерного газотурбинного двигателя

Полный текст:

  • Статья
  • Об авторе
  • Cited By

Аннотация

Ключевые слова

Для цитирования:

Калиниченко А.И. Воздушная система запуска малоразмерного газотурбинного двигателя. Вестник Концерна ВКО «Алмаз – Антей». 2016;(3):61-66. https://doi.org/10.38013/2542-0542-2016-3-61-66

For citation:

Kalinichenko A.I. Air starting system of small-size gas turbine engine. Journal of «Almaz – Antey» Air and Space Defence Corporation. 2016;(3):61-66. https://doi.org/10.38013/2542-0542-2016-3-61-66

В настоящее время перспективным БЛА не­обходим компактный малой массы газотур­бинный двигатель, способный к быстрому запуску и развитию высокой удельной тяги в широком диапазоне условий эксплуатации. Масса и размеры системы запуска могут со­ставлять значительную часть двигателя, в осо­бенности если требуется ускоренный многоразовый запуск.

Основными требованиями, предъявляе­мыми к системе запуска ГТД БЛА, являются:

  • мгновенный или ускоренный запуск до максимального режима;
  • надежность запуска в различных ус­ловиях;
  • малая масса;
  • компактность;
  • удобство обслуживания;
  • безопасность применения;
  • низкая стоимость.

Существующие маршевые ГТД, имею­щие одноразовый ускоренный запуск, обору­дованы пиротехнической системой запуска, соответствующей большей части предъявляе­мых требований за исключением требований по безопасности, возможности многократного использования системы и ГТД на БЛА, а также низкой себестоимости.

В АО «Омское мотостроительное кон­структорское бюро» (АО «ОМКБ») в качестве альтернативного варианта, соответствующего указанным требованиям, разработана система воздушного запуска с непосредственной подачей сжатого воздуха на рабочие лопатки турбины.

Задача усложнена тем обстоятельством, что исходя из особенностей применения ГТД на БЛА масса системы запуска должна быть минимальной. Это накладывает ограничения на допустимый объем баллона для сжатого воздуха.

При проведении работ были поставлены следующие задачи:

  • установить зависимость оборотов рас­крутки ротора от объема баллона и давления воздуха;
  • рассчитать минимальную частоту рас­крутки ротора, при которой осуществляется надежный и безопасный запуск изделия;
  • определить мощности турбины и ком­прессора на различных частотах вращения при их совместной работе без подачи топлива в камеру сгорания (на режимах так называемой холодной прокрутки);
  • вычислить мощность, подводимую к ротору от пускового устройства.
Читать еще:  Что означает асинхронный и синхронный двигатель

Для отработки технических решений была изготовлена установка, позволяющая ис­пользовать металлокомпозитные баллоны типа БК-2-300С различной емкости.

В данной работе были последовательно использованы баллоны емкостью 0,007, 0,004, 0,003 и 0,002 м 3 . Воздушная система испыта­тельного стенда позволяла заряжать баллоны воздухом с давлением до 24,5 МПа. Работа по проверке запусков от воздушной систе­мы проводилась на газогенераторе двигателя ТРДД-50БЭ

Программа работ была построена таким образом, что перед каждым запуском двигателя проводилась холодная прокрутка (ХП) ротора (результаты ХП двигателя показаны на рис. 1). Полученные материалы показывают ожидае­мую качественную зависимость оборотов мак­симальной раскрутки ротора от емкости балло­на и давления содержащегося в нем воздуха.

Для количественной оценки максималь­ной частоты вращения в зависимости от объ­ема баллона (рис. 2) рассмотрено влияние объема баллона на максимальные обороты раскрутки ротора при фиксированном давлении в нем 19,6 МПа. Полученная зависимость была аппроксимирована уравнением

nmax19,6 = — 0,3401V 2 + 5,934V + 9,2326. (1)

Рис. 2. Зависимость максимальных оборотов рас­крутки от объема баллона

Для оценки влияния давления в баллоне на максимальные обороты раскрутки ротора на рис. 3 приведены указанные величины в от­носительных единицах. Здесь по оси абсцисс отложено относительное давление в баллоне ротн = рбал /19,6, по оси ординат — отношение частоты вращения при заданном давлении к частоте вращения при давлении в баллоне Рбал = 19,6 МПа. По данным рис. 3 все экспериментальные точки достаточно плотно ложат­ся на линию, описываемую уравнением

Рис. 3. Зависимость частоты вращения от давления воздуха

Приведенные материалы позволяют про­гнозировать максимальную частоту раскрутки ротора при произвольных значениях объема баллона и начальном давлении воздуха.

Например, если объем баллона равен 0,0045 м 3 , а давление воздуха в нем равно 17,6 МПа, расчет по формуле (1) и (2) показы­вает, что относительная частота вращения составит nотн = 0,914.

Выборка материалов по удачным запу­скам газогенератора от баллонов емкостью 0,007, 0,004 и 0,003 м 3 приведена в табл. 1, в нее также включены данные по одному удачному запуску от баллона емкостью 0,002 м 3 .

Экспериментальные и расчетные значения параметров, при которых обеспечивается надежный запуск

Холодная прокрутка

ХПД производится после неудавшегося запуска или ложного запуска для удаления топлива из камеры сгорания.

После подготовки двигателя, самолетных систем и ВСУ (если запуск двигателей от ВСУ) произвести на панели запуска обычную подготовку к запуску двигателя, но переключатель рода работ установить в положение “ХОЛОДНАЯ ПРОКРУТКА ”. Нажать кнопку “ ЗАПУСК”.

Работа схемы аналогична нормальному запуску.

Отличие ХПД от нормального запуска в том, что “+” б/ сети не подается на ПДА и не подается топливо, не работает И-2 и система зажигания. Частота вращения ротора ВД при ХПД = 20+1 %. Рычаг останова двигателя находится в положении “ОСТАНОВ”. Время работы ХПД 60 сек.

Ложный запуск

Производится для консервации двигателей. При подготовке к ложному запуску на панели запуска переключатель рода работ установить в положение “ ЛОЖНЫЙ ЗАПУСК “. Все остальное как при обычном запуске, но не включается система зажигания (3 шт. АЗСГК-10 “ЗАЖИГАНИЕ “ в ХРУ выключить), пусковое топливо, импульсатор и нагревательные элементы камеры воспламенителей. Стартер раскручивает ротор В.Д. 60+9 сек, после чего зеленая лампа “ПДА РАБОТАЕТ” гаснет и ПДА -154 приходит в состояние готовности NВД = 8-10 %

Запуск двигателя в воздухе

Производится в горизонтальном полете для каждой высоты на определенной скорости и только исправного двигателя. Рычаг управления двигателем установить в положение “ МАЛЫЙ ГАЗ “, рычаг останова в положение “ ЗАПУСК ”, “РЕВЕРС ВЫКЛЮЧЕН”, открыть перекрывной кран. Табло “РНА ПРИКРЫТ” и “КЛАПАН ПЕРЕПУСКА ” должны гореть. Главный выключатель не включать, переключатель выбора двигателя в произвольном положении, переключатель рода работ также в произвольном положении.

Нажать кнопку “ ЗАПУСК В ВОЗДУХЕ “ “+” б/сети через АПД поступает на лампу “ПДА РАБОТАЕТ”, агрегат зажигания и МКТ-212 пускового топлива.

Через 35 сек ПДА отключает электропитание от агрегатов системы запуска и лампа “ПДА РАБОТАЕТ “ гаснет.

При отказе ПДА (лампа не работает) нужно кнопку “ ЗАПУСК В ВОЗДУХЕ “ удерживать 40 сек. Если не произошло воспламенение топлива в течение 35 сек, то запуск прекратить переводом рычага останова в положение “ ОСТАНОВ “.

ПРИМЕЧАНИЕ: Разрешается производить не более 5 попыток запуска.

При отсутствии переменного тока ЭЦН-319 включается от аккумуляторов при нажатии кнопки “ ЗАПУСК В ВОЗДУХЕ “ автоматически.

Прекращение запуска

Осуществляется кнопкой “ ПРЕКРАЩЕНИЕ ЗАПУСКА “ или автоматически при выдаче сигнала останова от РТ-12-9А.

Если в процессе выхода двигателя на режим МГ стартер не отключится, на NВД = 3600 об/мин сработает центробежный выключатель стартера, замыкая минусовую цепь реле, которое своими контактами подаст питание на обмотку реле выключения двигателя.

Рис. Управляющий обратный клапан 5102А.

Клапан 2. Электромеханизм МПК13А-5

Клапан 5102А предназначен для регулирования горячего воздуха отбираемого от двигателей и ВСУ самолета ТУ-154 для подачи его в систему охлаждения.

Рис. Электромеханизм ЭПВ-150МТ

1.Коробка концевых выключателей

2. Электродвигатель со снятой крышкой .

Основные технические данные

1.Напряжениепитания, В: 27±10%

2.Нагрузочный момент на выходном валу 14,7-1,96Н/м (1,5-0,2кгс/м)

3.Потребляемый ток не более 3А

4.Угол поворота выходного вала, ограничен микровыключателями 90±5

5. Инерционный выбег выходного вала при номинальном напряжении на холостом ходу не более 5°

6.Время поворота выходного вала на угол, ограниченный микровыключателями, не более 3с

Ссылка на основную публикацию
Adblock
detector