Холостой режим асинхронного двигателя

12. Холостой ход асинхронного двигателя

Режим холостого хода асинхронного двигателя возникает при отсутствии на валу нагрузки в виде редуктора и рабочего органа. Из опыта холостого хода могут быть определены значения намагничивающего тока и мощности потерь в магнитопроводе, в подшипниках, в вентиляторе. В режиме реального холостого хода s=0,01-0,08. В режиме идеального холостого хода n2=n1, следовательно s=0 (на самом деле этот режим недостижим, даже при допущении, что трение в подшипниках не создаёт свой момент нагрузки — сам принцип работы двигателя подразумевает отставание ротора от поля статора для создания поля ротора. При s=0 поле статора не пересекает обмотки ротора и не может индуцировать в нём ток, а значит не создаётся магнитное поле ротора.)

13. Приведение вторичной обмотки трансформатора к первичной

Для упрощения анализа и расчета режимов работы трансформатора пользуются способом, при котором одна из его обмоток приводится к другой. Смысл приведения состоит в том, чтобы сделать ЭДС первичной и вторичной обмоток одинаковыми, электромагнитную связь между обмотками заменить электрической связью и получить единую электрическую схему замещения трансформатора, построить другую, более простую и наглядную векторную диаграмму. Чаще всего вторичную обмотку приводят к первичной. Для этого условно заменяют реальную вторичную обмотку некоторой фиктивной обмоткой с числом витков:

т.е. увеличивают число ее витков в k раз. Таким образом, коэффициент приведения вторичной обмотки к первичной равен коэффициенту трансформации. Все параметры приведенной обмотки обозначают со штрихами:

и т.д. В приведенной обмотке в соответствии с новым числом витков увеличиваются все ЭДС, напряжения и падения напряжения, т.е.:

Важным условием приведения является то, чтобы мощности и потери энергии во вторичной обмотке не изменялись. Для этого должны выполняться равенства:

из которых получаются соотношения для тока и активного сопротивления приведенной вторичной обмотки:

Аналогично последнему соотношению изменяются индуктивное сопротивление рассеяния приведенной вторичной обмотки и параметры нагрузки:

Для полных сопротивлений справедливы соотношения:

Если таким образом изменить (условно конечно) все электрические величины вторичной обмотки, то энергетические соотношения в реальном и приведенном трансформаторе сохраняются без изменений и поэтому приведение правомерно. При этом необходимо помнить, что приведение — это чисто аналитический прием, позволяющий упростить расчеты и анализ физических процессов в реальном трансформаторе.

14. Основные уравнения и векторная диаграмма трансформатора Векторная диаграмма трансформатора

Воспользуемся вторым основным уравнением и произведем сложение векторов:

Для этого к концу вектора E2‘ пристроим вектор — j I2‘ x2‘, а к его концу — вектор — I2‘ r2‘. Результирующим вектором U2‘ будет вектор, соединяющий начало координат с концом последнего вектора. Теперь используем третье основное уравнение:

из которого видно, что вектор тока I1 состоит из геометрической суммы векторов I10 и — I2‘. Произведем это суммирование и достроим векторную диаграмму трансформатора. Теперь вернемся к первому основному уравнению:

Чтобы построить вектор — Е1 , нужно взять вектор +Е1 и направить его в противоположную сторону. Теперь можно складывать с ним и другие векторы: + j I1 x1 и I1 r1. Первый будет идти перпендикулярно току, а второй — параллельно ему. В результате получим суммарный вектор u1.

Построенная векторная диаграмма трансформатора имеет общий характер. По этой же методике можно осуществить ее построение как для различных режимов, так и для разных характеров нагрузки.

Режим холостого хода. Режим холостого хода асинхронного двигателя возникает при отсутствии на валу нагрузки в виде редуктора и рабочего органа

Режим холостого хода асинхронного двигателя возникает при отсутствии на валу нагрузки в виде редуктора и рабочего органа. Из опыта холостого хода могут быть определены значения намагничивающего тока и мощности потерь в магнитопроводе, в подшипниках, в вентиляторе. В режиме реального холостого хода s=0,01-0,08. В режиме идеального холостого хода n2=n1, следовательно s=0 (на самом деле этот режим недостижим, даже при допущении, что трение в подшипниках не создаёт свой момент нагрузки — сам принцип работы двигателя подразумевает отставание ротора от поля статора для создания поля ротора. При s=0 поле статора не пересекает обмотки ротора и не может индуцировать в нём ток, а значит не создаётся магнитное поле ротора.)

Читать еще:  Чем грозит вибрация двигателя

Режим электромагнитного тормоза (противовключение)

Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Для режима справедливы неравенства:

Этот режим применяют кратковременно, так как при нём в роторе выделяется много тепла, которое двигатель не способен рассеять, что может вывести его из строя.

Для более мягкого торможения может применяться генераторный режим, но он эффективен только при оборотах, близких к номинальным.

32.Устройство и основные серии АД.

Асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод(сердечник); все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл.град. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения тока в обмотке статора, поэтому его набирают из пластин электротехнической стали для обеспечения минимальных магнитных потерь. Основным методом сборки магнитопровода в пакет является шихтовка.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из пластин электротехнической стали.

Новые серии асинхронных электродвигателей: В последние годы в России освоен выпуск новых серий асинхронных двигателей серий RA (0,37. 100 кВт), 5А (5АН) (0,37. 400 кВт) и 6А. Разработка электродвигателей4А, АИ, RA, 5А и 6А базировалась, кроме отечественных стандартов, на рекомендациях МЭК (Международной электротехнической комиссии).
Асинхронные двигатели различаются по степени защиты (например IP23, IP44), способу охлаждения (например IC01, IC0141), способу монтажа (например IM1001).
IP — означает International Protection; 23 — защищенное; 44 — закрытое исполнение.
1С — International Cooling; 01 — машина с самовентиляцией; IC0141 — машина, обдуваемая наружным вентилятором, расположенным на ее валу.
IM — International Mounting; IM 1001 — машина на лапах, с двумя подшипниковыми щитами, с горизонтальным расположением вала, с цилиндрическим концом.
Электрические машины подразделяются по климатическим условиям эксплуатации. Используются следующие обозначения климатического исполнения машин, эксплуатируемых на суше, реках, озерах для климатических районов: с умеренным климатом — У; с холодным климатом — ХЛ; с влажным тропическим — ТВ; с сухим тропическим — ТС; с сухим влажным — Т; общеклиматическое исполнение — О.

5А250М4 асинхронный электродвигатель 5 серии; 250 — высота оси вращения, мм ( «габарит электродвигателя» ); М длина средняя корпуса по установочным размерам; 4 — число полюсов ( 1500 об/мин ).

RA100M4 российский асинхронный электродвигатель; 100 высота оси вращения, мм; М — длина средняя корпуса по установочным размерам; 4 — число полюсов ( 1500 об/мин ).

AKP132S6 асинхронный двигатель Интерэлектро (международная организация стран СЭВ); Р — вариант увязки мощностей и установочных размеров; 132 — высота оси вращения, мм; S — длина малая корпуса по установочным размерам; 6 — число полюсов ( 1000 об/мин ).

34.Уравнения напряжений и ЭДС АД

Напряжение U1, приложенное к фазе обмотки статора, уравновешивается основной ЭДС E1, ЭДС рассеяния и падением напряжения на активном сопротивлении обмотки статора:

Читать еще:  Шкода суперб схема двигателя

В роторной обмотке аналогичное уравнение будет иметь вид:

 Но так как роторная обмотка замкнута, то напряжение U2=0, и если учесть еще, что E2s=SE2 и x2s=Sx2 , то уравнение можно переписать в виде:

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.001 с) .

Холостой режим асинхронного двигателя

К режимам работы асинхронного двигателя относятся (см. рисунок 1):

— двигательный режим;
— генераторный режим;
– режим противовключения;
– режим динамического торможения;
— режим холостого хода.

Рисунок 1 – Механическая характеристика асинхронного двигателя

Основным режимом работы асинхронного двигателя является двигательный режим, рассмотрим работу асинхронной электрической машины на примере рисунка ниже:

В этой статье мы не станем рассматривать, как происходит возбуждение обмоток и начало движения, почитать про то, как создается магнитное моле в асинхронном 3-х фазном двигателе Вы можете тут.

Начало движения происходит из точки 1 с определённым пусковым моментом Мп, который зависит от параметров самого асинхронного двигателя, обычно отношение к номинальному будет равно:

Далее происходит постепенный разгон до точки 2, которая имеет критический (максимальный) момент двигателя Мкр, после чего двигатель будет переходить в точку 3, которая является точкой номинальной работы электрической машины, в ней момент и скорость вращения вала равны номинальному моменту Мн и скорости n2 соответственно. Так же необходимо подметить, что действительный номинальный момент может не соответствовать тому, который указан на шилдике двигателя, это различие будет мало, оно зависит от характера и величины нагрузки на валу, износа внутренних деталей двигателя и т.д.

В номинальном режиме работы скорость вращения вала меньше скорости вращения магнитного поля, создаваемого статорной обмоткой, поэтому справедливо неравенство:

где n1 – скорость вращения магнитного поля статора;
n2 – скорость вращения вала.

Относительная разность этих скоростей является таким понятием как – скольжение асинхронного двигателя, которое рассчитывается по формуле:

Скольжение во время работы в двигательном режиме будет меньше единицы, и чем оно ближе к номинальной точке работы, тем становится меньше, и для этого справедливо неравенство:

Режим холостого хода

Холостой ход асинхронного двигателя имеет место в том случае, если на валу отсутствует нагрузка в виде рабочего органа или редуктора. При сборке нового двигателя всегда проводится испытания холостого хода, для того что бы определить потери в подшипниках, вентиляторе и магнитопроводе, а так же узнать значения намагничивающего тока. Во время холостого хода скольжение составляет: S=0,01÷0,08.

Следует заметить, что так же существует режим идеального холостого хода, при котором n2=n1, что практически реализовать невозможно, даже если учесть, что нет силы трения в подшипниках. На самом деле, суть заключается в том, что асинхронному двигателю необходимо, чтобы ротор отставал от магнитного вращающегося поля статора. При отставании поле статора индуцирует магнитное поле в ротор, что заставляет его вращаться за полем статора.

Для того чтобы перейти в данный режим, нужно двигатель разогнать с помощью некоторого внешнего воздействия, к примеру, другим двигателем, до скорости, которая превышала бы скорость вращения магнитного поля статора. В результате изменилось бы направление тока и ЭДС в роторной обмотке и асинхронный двигатель перешел бы в генераторный режим. При этом условии также изменит направление и электромагнитный момент, который в данном режиме работы будет тормозным.Следует заметить, что в генераторном режиме скольжение S

Для работы асинхронного двигателя в генераторном режиме необходим источник реактивной мощности, который создает магнитное поле. При отсутствии поле создают с помощью постоянных магнитов, или же за счет остаточной индукции машины и параллельно подключенных к фазам обмотки статора конденсаторам при активной нагрузке. В генераторном режиме двигатель потребляет большое количество реактивного тока, из-за чего необходимо наличие в сети генераторов реактивной мощности: синхронных компенсаторов, синхронных машин. Данный режим используется довольно часто, к примеру, в эскалаторах и пассажирских лифтах (в зависимости веса в кабине и противовеса), которые едут вниз.

мтомд.инфо

Рабочие характеристики асинхронного двигателя

Раздел: Электротехника

Рабочие характеристики асинхронного двигателя представляют собой графически выраженные зависимости частоты вращения n2, КПД асинхронного двигателя η, полезного момента (момента на валу) М2, коэффициента мощности cos φ, и тока статора I1 от полезной мощности Р2 при U1 = const f1 = const.

Расчет рабочих характеристик асинхронного двигателя

Скоростная характеристика n2 = f(P2). Частота вращения ротора асинхронного двигателя n2 = n1(1 — s).

Скольжение s = Pэ2/Pэм, то есть скольжение асинхронного двигателя, а следовательно, и его частота вращения определяются отношением электрических потерь в роторе к электромагнитной мощности. Пренебрегая электрическими потерями в роторе в режиме холостого хода, можно принять Рэ2 = 0, а поэтому s ≈ 0 и n2 ≈ n1.

По мере увеличения нагрузки на валу асинхронного двигателя отношение s = Pэ2/Pэм растет, достигая значений 0,01 — 0,08 при номинальной нагрузке. В соответствии с этим зависимость n2 = f(P2) представляет собой кривую, слабо наклоненную к оси абсцисс. Однако при увеличении активного сопротивления ротора двигателя r2′ угол наклона этой кривой увеличивается. В этом случае изменения частоты асинхронного двигателя n2 при колебаниях нагрузки Р2 возрастают. Объясняется это тем, что с увеличением r2′ возрастают электрические потери в роторе.

Рабочие характеристики асинхронного двигателя

Зависимость М2 = f(P2). Зависимость полезного момента на валу асинхронного двигателя М2 от полезной мощности Р2 определяется выражением M2 = Р22 = 60 P2/(2πn2) = 9,55Р2/n2, где Р2 — полезная мощность, Вт; ω2 = 2πf2/60 — угловая частота вращения ротора.

Из этого выражения следует, что если n2 = const, то график М2 = f22) представляет собой прямую линию. Но в асинхронном двигателе с увеличением нагрузки Р2 частота вращения ротора уменьшается, а поэтому полезный момент на валу М2 с увеличением нагрузки возрастает не сколько быстрее нагрузки, а следовательно, график М2 = f (P2) имеет криволинейный вид.

Зависимость cos φ1 = f (P2). В связи с тем что ток статора асинхронного двигателя I1 имеет реактивную (индуктивную) составляющую, необходимую для создания магнитного поля в статоре, коэффициент мощности асинхронных двигателей меньше единицы. Наименьшее значение коэффициента мощности соответствует режиму холостого хода. Объясняется это тем, что ток холостого хода электродвигателя I при любой нагрузке остается практически неизменным. Поэтому при малых нагрузках двигателя ток статора невелик и в значительной части является реактивным (I1 ≈ I). В результате сдвиг по фазе тока статора относительно напряжения получается значительным (φ1 ≈ φ), лишь немногим меньше 90°.

Коэффициент мощности асинхронных двигателей в режиме холостого хода обычно не превышает 0,2. При увеличении нагрузки на валу двигателя растет активная составляющая тока I1 и коэффициент мощности возрастает, достигая наибольшего значения (0,80 — 0,90) при нагрузке, близкой к номинальной. Дальнейшее увеличение нагрузки на валу двигателя сопровождается уменьшением cos φ1 что объясняется возрастанием индуктивного сопротивления ротора (x2s) за счет увеличения скольжения, а следовательно, и частоты тока в роторе.

В целях повышения коэффициента мощности асинхронных двигателей чрезвычайно важно, чтобы двигатель работал всегда или по крайней мере значительную часть времени с нагрузкой, близкой к номинальной. Это можно обеспечить лишь при правильном выборе мощности двигателя. Если же двигатель работает значительную часть времени недогруженным, то для повышения cos φ1, целесообразно подводимое к двигателю напряжение U1 уменьшить. Например, в двигателях, работающих при соединении обмотки статора треугольником, это можно сделать пересоединив обмотки статора в звезду, что вызовет уменьшение фазного напряжения в раз. При этом магнитный поток статора, а следовательно, и намагничивающий ток уменьшаются примерно в раз. Кроме того, активная составляющая тока статора несколько увеличивается. Все это способствует повышению коэффициента мощности двигателя.

Ссылка на основную публикацию
Adblock
detector