Шаговый двигатель принцип работ

Устройство шагового двигателя

Шаговый электродвигатель относится к виду электрических машин постоянного тока. Принцип действия шагового электродвигателя основан на способе преобразования импульсной электрической энергии в механическое дискретное перемещение.

Шаговые электродвигатели классифицируются как бесколлекторные двигатели с высокой степенью надежности и большим сроком службы. Особенности этого типа электродвигателей делают их пригодными к эксплуатации даже в самых сложных производственных условиях.

Отличительной особенностью шаговых двигателей является большое значение крутящего момента на низких скоростях, в то время как в коллекторных двигателях значение крутящего момента возрастает только при увеличении скорости.

Конструкция шагового электродвигателя предполагает наличие более сложной схемы управления, обеспечивающей коммутацию обмоток, в сравнении с другими электродвигателями постоянного тока.

Шаговые электродвигатели подразделяются на три вида: с постоянными магнитами; с переменным магнитным сопротивлением; гибридные.

Двигатели с постоянными магнитами

Электродвигатели с постоянными магнитами включают в себя статор с обмотками и ротор, в конструкцию которого входят постоянные магниты.

Статор в таком электродвигателе имеет два противоположных полюса, на каждом из которых имеется независимая обмотка. При подаче электропитания в одну из обмоток ротор перемещается в положение, при котором его полюса располагаются напротив разноименных полюсов статора. Непрерывное вращение ротора достигается попеременным включением фаз.

Шаговые электродвигатели с постоянными магнитами, в силу конструктивных особенностей, подвержены влиянию обратной ЭДС, которая наводится в роторе и ограничивает скорость его вращения.

Высокая скорость вращения ротора возможна в электродвигателях, с переменным магнитным сопротивлением.

Двигатели с переменным магнитным сопротивлением

Статор шагового электродвигателя с переменным магнитным сопротивлением содержит несколько пар полюсов. Полюса каждой пары расположены напротив друг друга и имеют независимые одноименные обмотки. Ротор оборудован зубцами, сделанными из мягкого магнитного материала.

При подаче электропитания в одну из пар обмоток ротор перемещается в положение, при котором его зубцы располагаются напротив запитанных обмоток статора. При подаче электропитания на другую пару обмоток ротор перемещается в положение, при котором его зубцы располагаются напротив запитанной пары, и вновь замыкают магнитный поток. Непрерывное вращение ротора достигается попеременным включением фаз.

Гибридные шаговые двигатели

Гибридные шаговые электродвигатели имеют конструкцию, сочетающую в себе преимущества двух предыдущих типов электродвигателей. Гибридные электродвигатели являются более скоростными и обеспечивают шаг малой величины. Однако стоимость этих электродвигателей выше.

Ротор гибридного электродвигателя состоит из двух частей зубчатой формы, разделенных между собой цилиндрическим постоянным магнитом. Зубцы каждой составной части ротора являются одноименными полюсами: северными или южными. Угол поворота составных частей ротора относительно друг друга равен половине шагового угла зубцов.

Все зубчатые полюса ротора выполнены в виде пакетов пластин. Такая конструкция способствует снижению потерь, связанных с вихревыми токами.

Конструкция статора также содержит зубчатые полюсные наконечники для обеспечения нужного количества полюсов, эквивалентных роторным, при этом обмотками оборудованы только основные полюса.

Биполярные и униполярные шаговые двигатели

В зависимости от конфигурации обмоток шаговые электродвигатели могут быть биполярными и униполярными.

Биполярным называется электродвигатель, у которого каждая фаза оборудована только одной обмоткой, а переключение обмоток изменяет направление магнитного поля.

Униполярным называется электродвигатель, у которого каждая фаза также оборудована только одной обмоткой, но выводы сделаны от середины каждой обмотки. Переключение половинок обмотки изменяет направление магнитного поля.

Шаговыми электродвигатели оборудуются многие устройства: офисная техника (принтеры, факсы, сканеры и т.д), специальное промышленное оборудование, различные периферийные технические устройства.

Принцип работы шагового электропривода и шаговых электродвигателей. Их конструкция и применение

Принцип работы шагового электропривода и шаговых электродвигателей

Электропривод, обеспечивающий преобразование числовой информации в дискретные механические положения называется шаговым. Электродвигатель с таким приводом работает от импульсных команд. Информационный сигнал управления шаговым электродвигателем поступает в распределитель импульсов в виде унитарного кода. Маломощное напряжение U1 поступает в усилитель мощности, где преобразуется в силовой импульс тока I1, возбуждающий фазу электродвигателя. Очередной сигнал вызывает появление напряжения U2 и тока I2, который вызывает сдвиг магнитного поля и соответствующий ему шаг ротора. Тоже происходит после очередного входного импульса. Далее цикл повторяется.

Принцип действия самого шагового электродвигателя можно рассмотреть на его упрощенной модели. Кольцевая обмотка статора электродвигателя, поворотные щетки, связывающие отпайки обмотки с источником питания. Роль щеток могут выполнять контактные или электронные ключи. Ось щеток и ось двухполюсного ротора в исходном положении совпадают. Сдвиг щеток характеризуется определенным углом, что вызывает поворот вектора магнитного поля на этот же угол. Ротор стремится догнать поле так, чтобы его ось совпала с осью щеток, то есть исключить динамическую ошибку. Непрерывное вращение щеток приводит к вращению ротора.

Конструкция и применение шаговых двигателей

Шаговые электродвигатели относятся к синхронным машинам. Их можно разделить на вращающиеся, линейные и комбинированные. Во вращающихся шаговых электродвигателях катушки обмоток укладываются в пазах железа статора с угловым смещением, зависящим от числа фаз.

В соответствие с назначением электродвигателя пазы имеют различную конфигурацию. Ротор магнитоэлектрического двигателя имеет несколько пар полюсов магнитов, а индукторного большое число зубцов. Принцип работы электродвигателя: по катушке протекает ток, создавая электромагнитный поток, фиксирующий ротор по зубцам полюсного выступа. При выключении фазы 1 и включении фазы 2 вызывается сдвиг потока на электрический угол, равный 360 градусам, деленным на число фаз. Ротор поворачивается в положение наибольшей магнитной проводимости по отношению ко второму полюсу, на механический шаг равный 360 градусам, деленным на число фаз и на число зубцов пассивного ротора (или на число пар полюсов активного ротора). Движение ротора происходит под воздействием синхронизирующего момента, который аппроксимируется в синусоиду (см. видео), где точка О соответствует устойчивому положению ротора. То есть положению, когда зубец ротора находится под зубцом статора. Точки А и Б, характеризующие неустойчивое положение ротора находятся напротив паза статора. Угловые расстояния ОА и ОБ соответствуют максимальной динамической ошибке, равной 180 электрическим градусам. А расстояние между амплитудами синхронизирующего момента равно максимальной статической ошибке 90 электрических градусов. Амплитуда синхронизирующего момента зависит от результирующего тока включенных фаз. Точкам А, О, Б момента соответствует диаграмма потенциальной энергии. Состояние ротора можно смоделировать при помощи шарика, попавшего в так называемую потенциальную яму. Например, шарик находится в точке О устойчивого равновесия. Сдвиг характеристики момента соответствует смещению потенциальной ямы. При пуске двигателя ротор может отставать от положения результирующего тока на угол не более чем 180 электрических градусов, что соответствует подъему шарика на край ямы в точку неустойчивого равновесия. Ротор стремится догнать поле, а шарик скатиться вниз. Это движение обычно сопровождается колебаниями и динамическими ошибками, возникающими за счет инерции. За счет именно динамических ошибок шаговый двигатель втягивается в синхронизм при скачках управляющих частот. Предельный скачок частоты при пуске называется частотой приемистости. При повышении частоты входных команд скорость вращения увеличивается. Дальнейший скачок частоты не обеспечивает пуск двигателя. Частота надежного запуска и есть частота приемистости. Область динамических частот шаговых электроприводов простирается от сотен герц до 2 килогерц. С уменьшением габаритов двигателей и снижением величины шага, динамические частоты увеличиваются. Сочетание малогабаритного шагового двигателя с гидроусилителем момента, позволяет одновременно расширить диапазон рабочих частот и момента. Именно поэтому в станках ЧПУ, в роботах, в нажимных винтах прокатных станов и других механизмах, где требуется сочетание высокой точности и динамических показателей применяется электрогидравлический шаговый электропривод или электропривод с силовыми шаговыми электродвигателями.

Читать еще:  Шум холодного двигателя поло седан

Блоки управления промышленным шаговым приводом со сложными алгоритмами выполняются на компактных микросхемах. Создание схем со свойствами управляемого источника тока — инвертора тока, расширило рабочие частоты до 10-20кГц, что обеспечило ускоренное вспомогательное рабочее движение на станках ЧПУ. Во многих промышленных механизмах с дискретным движением требуется исключить колебания даже на холостом ходу. Для этого созданы схемы управления, обеспечивающие старт-стопное движение. Они вырабатывают дополнительные импульсы на торможение перед подходом ротора к очередной точке устойчивости. Такое управление позволило создать печатные автоматы, графопостроители и координатографы, специальную киноаппаратуру и другие устройства без сложной быстроизнашивающейся механики.

В некоторых устройствах необходимо использовать величину шага в несколько микрон, например в электронной технологии. Получение малых шагов за счет роста числа фаз или зубцов ограниченно. Сделать это позволяет электронное дробление самого шага. На специальной экспериментальной установке можно проследить за этим процессом. Токи в фазах меняются до установленного значения не сразу, а мелкими ступеньками или плавно по определенному закону. Соответственно происходит и плавный поворот результирующего вектора потока и угловой характеристики даже при низких частотах. На экране осциллографа можно отследить положение годографа тока. Кроме рассмотренных нами сложных шаговых электродвигателей применяемых в устройствах ЧПУ, существуют простейшие однофазные. Их основные преимущества — простота конструкции и малые габариты, один канал связи и минимальное потребление электроэнергии. Эти электродвигатели нашли широкое применение в электронных часах, приборах времени и других системах. Пуск и однонаправленное вращение этих двигателей обеспечивают несимметричные магнитопроводы и возбуждение от постоянных магнитов. Конструкция однофазных шаговых электродвигателей просты, но разработки новых образцов осложнены наличием постоянных магнитов и малыми габаритами.

Так устроены и работают вращающиеся шаговые электродвигатели. Стремление исключить быстроизнашивающиеся дорогостоящие механические передачи вращающихся шаговых электродвигателей привело к созданию разнообразных конструкций линейных шаговых электродвигателей. Если вращающийся шаговый электродвигатель разрезать по образующей, то можно получить одностороннюю конструкцию плоского типа. Плоский, линейный шаговый электродвигатель, реализующий взаимопоступающее движение. Эту конструкцию можно преобразовать в цилиндрическую. Цилиндрические шаговые электродвигатели относятся к четырехфазным двигателям индукторного типа. Их принцип действия аналогичен вращающемуся электродвигателю, но зубцы на пористых выступах статора размещены вдоль продольной оси, а не по окружности. Это позволяет получить линейные шаги ротора индуктора. Цилиндрический шаговый электродвигатель выполнен из магнитной мягкой стали и имеет зубцы расположенные перпендикулярно его оси. Малую величину шага в этих двигателях можно получить за счет многофазных катушечных обмоток. Гладкие концы вала индуктора укреплены в опорах скольжения или качения, что ограничивает длину хода.

Плоский линейный шаговый электродвигатель

При возбуждении со стороны ротора — якоря, получаем шаговый двигатель активного типа. Со стороны статора — индукторный, который получил широкое применение. Ход плоского электродвигателя ограничен его длиной. Закрепив индуктор, получим перемещение магнитной системы. В индукторе некоторых электродвигателей профрезированы зубцы. Для уменьшения эксплуатационного зазора и улучшения эксплуатационных показателей линейных шаговых двигателей используются воздушные опоры. Сжатый воздух, проходя через калиброванные отверстия якоря, создает воздушную подушку 15-20 микрон. В ряде случаев предусматривается магнитная фиксация ротора при отключении питания. Разработано большое количество комбинированных электродвигателей. Так сочетание пары электродвигателей перпендикулярно в одной раме образуют планарный электродвигатель. Он может осуществлять двухкоординатное движение на плоскости, являющейся индукторами. Большое усилие притяжения к плите позволяет такому двигателю работать в любом положении. Простота и однотипность физических процессов в шаговых двигателях, их конструктивная пластичность позволили разработать бесконтактные электромеханические и электронные модули, реализующие сложное многокоординатное движение без дорогостоящих и изнашивающихся кинематических преобразователей.

Микропроцессорное управление электроприводом дает возможность выбирать оптимальные режимы работы для разных промышленных установок, гибко перестраивать программы движения, компенсировать систематические погрешности изготовления модулей. Отмеченные особенности делают многокоординатный шаговый привод весьма перспективным для робототехники и построение гибкого автоматизированного производства. Отличительная особенность гибкой автоматизации состоит в совмещении транспортных и технологических операций в одной установке. На основе модульного привода создано новое поколение прецизионной аппаратуры для электронной и других отраслей промышленности.

ГЛАВА 4.ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ НА БАЗЕ ЭЛЕКТРОПРИВОДА С ШАГОВЫМИ ДВИГАТЕЛЯМИ

§4.1.Конструкция,принцип работы и характеристики синхронного шагового двигателя

Синхронными называются электрические машины переменного тока, у которых в рабочем режиме угловая скорость ротора равна угловой скорости магнитного поля статора и не зависит от нагрузки. В отдельных случаях скорость ротора кратна скорости поля статора.

Читать еще:  Шкода фабия глохнет двигатель на холостом ходу

В связи с развитием цифровой вычислительной техники разрабатывают и совершенствуют исполнительные элементы дискретного действия и, в частности, электрические шаговые двигатели. Шаговыми называют синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота вала или фиксированное перемещение без датчиков обратной связи. Шаговые двигатели выпускаются мощностью от единиц микроватт до киловатта, т.е. в основном – это микродвигатели и двигатели малой мощности.

Шаговые микродвигатели (ШД) работают в комплекте с полупроводниковыми коммутаторами. Роль коммутатора состоит в переключении обмоток управления ШД с последовательностью и частотой, соответствующими заданной команде. При этом результирующий угол поворота ШД строго соответствует числу переключений обмоток управления, направление поворота – порядку переключений, а угловая скорость – частоте переключений.

Классификация основных типов шаговых двигателей приведена на рис.4.1.

Шаговые двигатели являются многополюсными машинами. Их можно подразделить на три основные конструктивные группы: с постоянными магнитами (активного типа), реактивные и индукторные. Они могут иметь различное число фаз, но наибольшее распространение получили двух-, трех- и четырехфазные ШД. Напряжение питания обмотки управления шагового двигателя представляет собой последовательность однополярных или разнополярных прямоугольных импульсов, поступающих от коммутатора.

Двигатели активного типа. Статор шаговых двигателей имеет явновыраженные полюсы, на которых располагают обмотки управления. Число пар полюсов каждой из обмоток управления рм равно числу пар полюсов ротора. Ротор обычно представляет собой многополюсный постоянный магнит с радиальной намагниченностью.

Принцип действия ШД можно рассмотреть на примере двухполюсного двигателя.

На рис. 4.2,а показана схема подключения обмоток управления 1 и 2 двухфазного ШД к коммутатору К. Точками обозначены начала обмоток, U – напряжение питания, Uy – импульсный сигнал управления. На рис. 4.2,б изображена временная диаграмма силовых импульсов напряжения на обмотках управления двигателя при восьмитактной ( I-УШ ), разнополярной системе коммутации. Переход от одного такта к другому соответствует поступлению на коммутатор очередного импульсного сигнала управления. При этом, как видно, скачкообразно изменяется значение или полярность напряжения на обмотках управления.

Рассмотрим более подробно, что происходит в эти моменты времени в двигателе. Во время такта I положительный импульс тока возбуждает обмотку управления 1 (рис. 4.2,а). Магнитный поток статора Фс направлен по оси этой обмотки (рис.4.2,в). Ротор (постоянный магнит NS) притягивается к полюсам обмотки I и занимает положение вдоль ее оси. При переходе к такту II дополнительно возбуждаются полюсы обмотки управления 2. Результирующий поток статора Фc, создаваемый теперь двумя обмотками, скачком поворачивается на 45° (рис. 4.2,в). Возникает синхронизирующий момент синхронного двигателя, и ротор поворачивается на тот же угол. При переходе к такту III остается возбужденной только обмотка 2. Поток статора и ротор поворачиваются еще на один шаг, равный 45°. Положение потока статора на всех восьми тактах показано на рис.4.2, в.

Показанная на рис. 4.2 раздельно-совместная последовательность включения обмоток управления является несимметричной системой коммутации, так как нечетным и четным тактам соответствует возбуждение различного числа обмоток. Результирующий поток статора меняется от такта к такту, что вызывает пульсацию синхронизирующего момента и является недостатком схемы.

Систему коммутации называют симметричной, если на всех тактах возбуждается одинаковое число обмоток управления (раздельно, парами и т. д.). При симметричной коммутации шаг увеличивается вдвое, а результирующий поток статора на всех тактах одинаков.

Величина шага в значительной мере определяет разрешающую способность привода с ШД по отработке углового перемещения во всех режимах работы привода. В общем случае шагом ШД называют угол поворота ротора при воздействии одного сигнала управления и установленной схеме коммутации. В режиме отработки единичных шагов – работе с низкой частотой управляющих импульсов f – положение ротора фиксируется с нулевой скоростью на каждом шаге.

В реальном многополюсном двигателе шаг меньше показанного на рис.4.2 в рм раз и определяется выражением

Число тактов коммутации Ктк зависит от числа обмоток управления mу и схемы управления:

где К1 – коэффициент, равный 1 при симметричной и 2 – при несимметричной коммутации; К2 – коэффициент, равный 1 при однополярной и 2 – при разнополярной коммутации .

Увеличение числа пар полюсов при неизменном диаметре ротора ограничено технологическими возможностями и увеличением потока рассеяния между полюсами, обычно рм =4 &#247 6. Увеличение числа обмоток управления связано с усложнением коммутатора, обычно mу =2 &#247 4. Поэтому у активных ШД &#945ш составляет порядка десяти градусов. Дальнейшее уменьшение шага достигается либо механическим редуцированием с помощью специальных кинематических механизмов, либо специальными схемами электрического дробления шага.

Меньшая величина шага – порядка одного градуса– может быть получена у ШД реактивного и индукторного типа. У этих двигателей ротор изготавливается из обычной электротехнической стали, имеет на поверхности зубцы, число которых zp может быть достаточно большим, и

Однако у этих двигателей меньше вращающий момент.

Важной характеристикой установившегося режима (f=const) является предельная механическая характеристика — зависимость предельного вращающего момента шагового двигателя Мпред от частоты управляющих импульсов f (рис.4.3). Она определяет тот предел, до которого при данной частоте управляющих импульсов можно плавно нагружать вал ШД, сохраняя при этом синхронный режим. Предельную механическую характеристику рассматривают обычно при &#131>&#131 ,где &#131–частота главного резонанса. С увеличением частоты происходит уменьшение вращающего момента ШД, т.к. токи и потоки в обмотках управления все сильнее не успевают достигать установившихся значений за время такта.

Важным показателем переходных режимов (f=var – пуск, реверсирование, торможение) является приемистость ШД. Приемистость пуска – это наибольшая частота управляющих импульсов, отрабатываемых шаговым электродвигателем без потери шагов при пуске из состояния фиксированной стоянки под током.

Скачкообразное увеличение частоты управляющих импульсов при пуске от нуля до рабочей частоты приводит к тому, что в начале ротор отстает от МДС статора под действием момента инерции вращающихся частей. По мере ускорения он достигает угловой скорости МДС статора и за счет запасенной кинетической энергии может опередить МДС. Постепенно колебания затухают, и двигатель переходит в установившийся режим. Таким образом, в процессе пуска может возникнуть расхождение между числом шагов ротора и МДС статора. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага и момента инерции вращающихся частей; момент трения отрицательно влияет на приемистость.

Читать еще:  Электро подогрев при запуске двигателя

По аналогии могут быть введены понятия приемистости торможения и реверсирования, их значения несколько отличаются от приемистости пуска.

Если пренебречь моментом трения M&#131т и рассматривать уравнение равновесия моментов на валу ШД при малых углах рассогласования осей ротора и МДС статора, то получим дифференциальное уравнение движения ротора:

Шаговые двигатели: виды, принцип работы, система управления

Шаговые двигатели широко используются в бытовых приборах, транспортных средствах, фрезерных и шлифовальных станках и других производственных механизмах. Устройство представляет собой движок постоянного тока, один оборот которого разделен на несколько одинаковых шагов (это обеспечивается благодаря контроллеру). Главное его отличие от моторов других типов – отсутствие щеточного механизма. Шаговый двигатель оснащен блоком управления (приборной панелью), передатчиками и сигнализаторами.

Как работает шаговый электродвигатель

Зная принцип работы шагового двигателя, вы сможете самостоятельно установить его или произвести ремонт. Он функционирует следующим образом:

  • После подачи напряжения на клеммы начинается непрерывное вращение специальных щеток. Входные импульсы устанавливают ведущий вал в положение, которое заранее определено.
  • Под воздействием импульсов вал перемещается под фиксированным углом.
  • Внешняя цепь управления, чаще всего представленная микроконтроллером, возбуждает электромагниты зубчатого типа. Один из них (тот, к которому приложена энергия) притягивает к себе зубья шестерни, вследствие чего вал движка делает поворот.
  • Будучи выровнены по отношению к ведущему электромагниту, остальные магниты смещаются по направлению к следующей магнитной детали.
  • Вращение шестеренки обеспечивается отключением первого электромагнита и включением следующего.
  • Шестеренка выравнивается по отношению к предыдущему колесу, после чего весь процесс повторяется столько раз, сколько необходимо.

Данные вращения являются постоянным шагом. Для определения скорости мотора нужно подсчитать количество шагов, требуемых для его полного оборота. Точность работы обеспечивается благодаря микропроцессорным системам управления шаговых двигателей.

Виды шаговых двигателей

Существует несколько разных моделей шаговых двигателей. Если конструкция устройства предусматривает наличие постоянного магнита, принцип работы основан на притяжении или отталкивании статором и ротором электромагнитного мотора. В переменно-шаговом движке ротор изготавливается из железа. Минимально допустимое отталкивание в нем происходит при наименьшем зазоре, что обеспечивает притяжение точек ротора к полюсам магнитного статора. В механизмах гибридного типа оба вышеприведенных принципа сочетаются и дополняют друг друга. Из-за сложности конструкции и изготовления такие приборы стоят дороже, чем остальные модели.

Чаще всего в быту и на производстве применяются двухфазные шаговые двигатели. В зависимости от типа обмотки электромагнитных катушек они подразделяются на:

  • униполярные;
  • биполярные.

Механизмы первого типа оснащены одной обмоткой. Каждая фаза определяется центральным магнитным краном. При включении определенной секции обмотки обеспечивается нужное направление магнитного поля. Такая конструкция предусматривает работу магнитного полюса без дополнительного переключения, что обеспечивает предельно простую коммутацию цепи, равно как и направления тока. Для работы движка (с учетом фазного переключения) обычно достаточно трех проводов на фазу и шести для выходного сигнала. Микроконтроллер используется для активирования транзистора в нужной последовательности (она определяется программой).

Для подключения обмоток соединительные провода должны прикасаться к постоянным магнитам двигателя. При соединении клемм катушки вал проворачивается с трудом. Поскольку общий провод длиннее, чем провод, соединяющий катушки, сопротивление между торцами проводов и торцами катушек в два раза больше сопротивления между торцом катушки и общим проводом.

В механизмах второго типа есть только одна фазовая обмотка. Управляющая схема такого движка обычно сложнее, так как ток в обмотку поступает при помощи магнитного полюса переломным образом. Два провода на фазу не являются общими.

Трехфазный шаговый двигатель устанавливается на фрезерных станках с ЧПУ, запускаемых с компьютера, и транспортных средствах, в которых используется дроссельная заслонка.

Подключение шагового двигателя

Выбор схемы подключения шагового двигателя зависит от:

  • количества проводов в приводе;
  • способа запуска механизма.

Существующие модели движков имеют 4, 5, 6 или 8 проводов. Прибор с четырьмя проводами можно подключать только к биполярным устройствам. Он оснащен двумя фазными обмотками, каждая из которых имеет два провода. Для пошагового подключения драйвера необходимо определить пары проводов с непрерывной связью с помощью метра.

В механизме с шестью проводами каждая обмотка имеет два провода и центральный кран. Движки этой модели характеризуются высокой мощностью и подключаются как к биполярным, так и к однополярным исполнительным устройствам. В первом случае используется один центр-кран каждой обмотки и один конец провода. Во втором случае используются все шесть проводов. Разделение провода осуществляется с помощью измерительного прибора.

Отличие пятипроводного мотора от шестипроводной модели заключается в том, что соединение центральных клемм представляет собой сплошной кабель, который выходит к центральному проводу. Поскольку отделение одной обмотки от другой без разрывов не представляется возможным, необходимо определить центр провода, после чего соединять его с другими проводниками. Это будет самым безопасным и максимально эффективным решением. Затем движок подключается к сети и проводится проверка его работоспособности.

Для успешной эксплуатации механизма нужно иметь в виду следующие нюансы:

  • Номинальное напряжение производится первичной обмоткой при постоянном токе.
  • Изменение начальной скорости крутящего момента прямо пропорционально изменению тока.
  • Скорость понижения линейного момента на последующих высоких скоростях зависит от индуктивности обмоток и схемы привода.

Благодаря высокой степени защиты шаговые двигатели успешно работают в тяжелых условиях.

Ссылка на основную публикацию
Adblock
detector