Шаговый двигатель схема звезда

Драйвер шагового двигателя и двигателя постоянного тока L298N и Arduino

Модуль L298N H-bridge можно использовать для двигателей, напряжение питания которых находится в диапазоне от 5 до 35 вольт.

Кроме того, на многих подобных платах есть встроенный 5В регулятор, который дает возможность запитывать ваши устройства.

Подключение модуля L298N

Прежде чем перейти к управлению двигателем постоянного тока и шаговым двигателем, разберемся с подключением модуля L298N (даташит, техническая информация от производителя).

Ссылки для заказа необходимого оборудования из Китая

  • КУПИТЬ цифровой датчик температуры DS18B20;
  • КУПИТЬ Arduino Uno R3;

Ниже приведены разъяснения к рисунку.

  1. Для двигателя постоянного тока 1 “+” или для шагового двигателя A+
  2. Для двигателя постоянного тока 1 “-” или для шагового двигателя A-
  3. Коннектор на 12 вольт. Снимите его, если используете напряжение питания больше 12 вольт.
  4. Питания вашего двигателя обеспечивается с этого выхода. Максимальное напряжение питания постоянным током 35 вольт. Если напряжение больше 12 вольт, разомкните контакты на 3 коннекторе.
  5. GND — земля.
  6. Питание 5 вольт, если коннектор на 12 вольт замкнут. Идеально для питания Arduino и т.п.
  7. Коннектор для двигателя постоянного тока 1. Можно подключить к ШИМ-выходу для управления скоростью двигателя постоянного тока.
  8. IN1.
  9. IN2.
  10. IN3.
  11. IN4.
  12. Коннектор для двигателя постоянного тока 2. В случае использования шагового двигателя, подключать сюда ничего не надо. Можно подключить к ШИМ-выходу для управления скоростью двигателя постоянного тока.
  13. Двигатель постоянного тока 2 “+” или шаговый двигатель B+.
  14. Двигатель постоянного тока 2 “-” или шаговый двигатель B-.

L298N, Arduino и двигатель постоянного тока

Данный модуль дает возможность управлять одним или двумя двигателями постоянного тока. Для начала, подключите двигатели к пинам A и B на контроллере L298N.

Если вы используете в проекте несколько двигателей, убедитесь, что у них выдержана одинаковая полярность при подключении. Иначе, при задании движения, например, по часовой стрелке, один из них будет вращаться в противоположном направлении. Поверьте, с точки зрения программирования Arduino это неудобно.

После этого подключите источник питания. Плюс — к четвертому пину на L298N, минус (GND) — к 5 пину. Если ваш источник питания до 12 вольт, коннектор, отмеченный 3 на рисунке выше, можно оставить. При этом будет возможность использовать 5 вольтовый пин 6 с модуля.

Данный пин можно использовать для питания Arduino. При этом не забудьте подключить пин GND с микроконтроллера к 5 пину на L298N для замыкания цепи. Теперь вам понадобится 6 цифровых пинов на Arduino. Причем некоторые пины должны поддерживать ШИМ-модуляцию.

ШИМ-пины обозначены знаком “

” рядом с порядковым номером.

Теперь подключите цифровые пины Arduino к драйверу. В нашем примере два двигателя постоянного тока, так что цифровые пины D9, D8, D7 и D6 будут подключены к пинам IN1, IN2, IN3 и IN4 соответственно. После этого подключите пин D10 к пину 7 на L298N (предварительно убрав коннектор) и D5 к пину 12 (опять таки, убрав коннектор).

Направление вращения ротора двигателя управляется сигналами HIGH или LOW на каждый привод (или канал). Например, для первого мотора, HIGH на IN1 и LOW на IN2 обеспечит вращение в одном направлении, а LOW и HIGH заставит вращаться в противоположную сторону.

При этом двигатели не будут вращаться, пока не будет сигнала HIGH на пине 7 для первого двигателя или на 12 пине для второго. Остановить их вращение можно подачей сигнала LOW на те же указанные выше пины. Для управления скоростью вращения используется ШИМ-сигнал.

Скетч приведенный ниже, отрабатывает в соответствии со схемой подключения, которую мы рассматривали выше. Двигатели постоянного тока и Arduino питаются от внешнего источника питания.

// подключите пины контроллера к цифровым пинам Arduino

Шаговый Двигатель Схема Подключения

Формирование импульсов отводится микроконтроллерам например Arduino.


В одном 8 выводном корпусе SOIC-8 размещены 2 транзистора.

Путь для повышения магнитного поля — это увеличение тока или числа витков обмоток.
Управление биполярным шаговым двигателем

Двигатели с 4 обмотками имеют преимущество в том, что вы можете подключить обмотки любым удобным для вас образом и получить как биполярный, так и униполярный двигатель.

Например, двигатели с дисковым намагниченным ротором. Полушаговое управление интересно тем, что становится возможным более точное позиционирование вала двигателя, благодаря к тому, что к целым шагам добавляются еще и половинки это достигается совмещение предыдущих двух режимов работы, а обмотки чередуются, то включаясь попарно, то по одной.

У его намагниченного центрального вала имеется два набора зубов для двух магнитных полюсов, которые затем выстраиваются в линию с зубами вдоль электромагнитов. Оба сигнала имеют логические уровни и, если для их формирования используются выходы с открытым коллектором, то потребуются соответствующие резисторы подтяжки на Рисунке 10 они не показаны.

Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя.

Зависимость момента от скорости, влияние нагрузки Момент, создаваемый шаговым двигателем, зависит от нескольких факторов: скорости. Причиной этого является фильтрующее действие инерции ротора и нагрузки.

Управление шаговым двигателем

Читать еще:  Газ 31105 волга 406 двигатель расход бензина

Сморите видео

Несмотря на то, что драйвер, обеспечивающий микрошаговый режим, намного сложнее обычного драйвера, всё равно система может оказаться более простой и дешевой, чем шаговый двигатель, плюс редуктор. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полная схема, приведенная в [ 10 ] и многократно повторенная на интернет-сайтах, пригодна для использования в качестве тестовой платы. С помощью подстроечного резистора видно на правом фото можно задавать выходной ток.

Схема содержит описанный ранее двунаправленный двухфазовый формирователь на D-триггерах Рисунок

Современные микроконтроллеры иногда имеют встроенные ЦАПы, которые можно использовать для реализации микрошагового режима взамен специальных контроллеров.

Увеличение или уменьшение питающего напряжения ни к чему не приведет, так как обороты задаются частотой сети. Направление магнитного поля зависит от того, на какой именно вывод обмотки подан положительный потенциал.

Соответственно, в режиме удержания поскольку используются 8 разрядов ЦАП , максимальный ток составит 1 А. При этом используется номинальное число шагов.

Синусоидальный ток фаз может быть обеспечен применением специальных драйверов.

Это означает, что в таком режиме не может быть получен полный момент. Внутри находятся полюсные наконечники в виде ламелей.
Шаговый двигатель БЕЗ ДРАЙВЕРА!

Виды шаговых двигателей по типу ротора:

После этого ротор повернется и будет стараться принять одно из следующих положений равновесия. Для устранения колебаний момента при работе двигателя в полушаговом режиме можно снижать ток в те моменты, когда включены две фазы.

Соответственно, в режиме удержания поскольку используются 8 разрядов ЦАП , максимальный ток составит 1 А.

Упрощенная схема коммутатора шагового двигателя без реверса. Еще раз обращаю внимание: при самостоятельном расчете не забудьте учитывать, что формирователь обеспечивает режим с перекрытием фаз, то есть необходимо закладываться на номинальный ток схемы питания, равный удвоенному максимальному току обмоток при выбранном напряжении питания. Из-за этих ограничений микрошаговый режим используется в основном для обеспечения плавного вращения особенно на очень низких скоростях , для устранения шума и явления резонанса.

Зависимость момента от угла поворота ротора для двух запитанных обмоток. Обычно у них четыре вывода, две обмотки.

В полношаговом режиме с двумя включенными фазами положения точек равновесия ротора смещены на пол-шага. Средние выводы обмоток могут быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 или 6 выводов рис.


Назначение этих диодов — гасить ЭДС самоиндукции, возникающую при выключении управляющих ключей. При включени тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Да и в современной бытовой технике, автомобилях, промышленном оборудовании коллекторные двигатели распространены достаточно сильно.

Если хотя бы одна обмотка шагового двигателя запитана, ротор принимает определенное положение. Но такой ток от микросхем серии 74HCхх забрать невозможно, поэтому потребуются дополнительные драйверы.

Обеспечивает паспортное значение электрических характеристик. Драйверы делятся на две категории: Повторяющие форму сигналов. Ротор не имеет постоянных магнитов, он выполнен из магнитомягкого материала в виде многоконечной звезды. Магнитный гистерезис приводит к тому, что магнитный поток зависит не только от тока обмоток, но и от предыдущего его значения. С точки зрения автора статьи, самым оптимальным для управления коммутацией обмоток двигателей небольшой мощности является использование подходящих по току и сопротивлению открытого канала RDC ON MOSFET, но с учетом рекомендаций, описанных выше.
Шаговый двигатель. Micro Step Driver. PLC Omron. Подключение,программирование. (Часть 1)

Технические характеристики A4988

Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Можно увеличить количество шагов в 16, 32, 64 раза и т.

Поддержка такого режима для указанного драйвера осуществляется микропроцессором, управляющим входами ЦАП. Таким образом, выполняется один шаг.

Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки. Режим управления двигателем задается коммутатором. Шаговые двигатели.

Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток, последовательно или параллельно. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток. Этот метод использует в два раза больше шагов, чем полный шаг, но он также имеет меньший крутящий момент.

А принцип работы этого всего очень прост: конденсатор формирует сдвиг фаз на одной из обмоток, в результате обмотки работают почти попеременно и шаговый двигатель крутится. В таком двигателе сечение отдельных обмоток вдвое больше, а омическое сопротивление — соответственно вдвое меньше. Так, пожалуй, можно дать строгое определение. Готовые шаговые двигатели с редукторами хотя и существуют, однако являются экзотикой. Иногда двигатели с постоянными магнитами имеют 4 раздельных обмотки.

Общие сведения:

Микрошаговый режим. Режим удержания уменьшает максимальный ток, потребляемый обмотками двигателя, с двух до одного ампера. Диаграммы, диаграммы

В пределе, шаговый двигатель может работать как синхронный электродвигатель в режиме непрерывного вращения. Схема контроллера униполярного шагового двигателя с драйвером на биполярных транзисторах. Описание библиотеки для работы с шаговым двигателем В среде разработки Ардуино IDE существует стандартная библиотека Strepper. Гибридный двигатель.
Обзор копеечной платы управления шаговым двигателем.

Читать еще:  Высокие обороты холостого хода на прогретом двигателе мерседес

Схема подключения частотного преобразователя: звезда – треугольник

Перейти в каталог продукции: Частотные преобразователи

Для управления трехфазным асинхронным двигателем применяются частотные преобразователи (инверторы), рассчитанные на однофазное или трехфазное входное напряжение. Инверторы обеспечивают возможность мягкого запуска двигателя и регулировки частоты оборотов, защиту от перегрузок. Кроме этого, частотник позволяет подключать трехфазные двигатели к однофазным сетям без потерь мощности. Преобразователи частоты трансформируют напряжение электросети частотой 50 Гц в импульсное с частотой от 0 Гц до 1 кГц.

Внимание: представленная схема является общей. При подключении используйте схему из инструкции по эксплуатации!

Однофазные преобразователи частоты рассчитаны на входное напряжение 1 фаза 220 В и на выходе формируют трехфазное напряжение 220 В заданной частоты. Иными словами, однофазный инвертор обеспечивает трехфазное питание асинхронного двигателя от бытовых электросетей. При использовании однофазных частотных преобразователей, в клеммной коробке двигателя, клеммы подключают по схеме «треугольник» (Δ). При подключении трехфазного асинхронного двигателя к однофазной сети 220 В, при использовании конденсаторной схемы, неизбежна большая потеря мощности. В то время как, при пользовании однофазного частотного преобразователя, подключаемого в двигателю по схеме «треугольник» (Δ), потерь мощности не происходит.

Более совершенные трехфазные преобразователи частоты работают от промышленных трехфазных сетей с напряжением 380 В, 50 Гц. Частота напряжения на выходе – от 0 Гц до 1кГц. Трехфазные инверторы подключают по схеме «звезда» (Y).

Трехфазный частотный преобразователь подключают асинхронному двигателю по схеме звезда:

Однофазный частотный преобразователь подключают асинхронному двигателю по схеме треугольник:

Для ограничения пускового тока и снижения пускового момента при пуске асинхронного двигателя мощностью более 5 кВт может применяться метод переключения «звезда-треугольник». В момент пуска напряжение на статор подключается по схеме «звезда», как только двигатель разгонится до номинальной скорости, производится переключение питания на схему «треугольник». Пусковой ток при переключении втрое меньше, чем при прямом пуске двигателя от сети. Этот метод пуска оптимально подходит для механизма с большой маховой массой, если нагрузка набрасывается после разгона.

Способ пуска переключением «звезда-треугольник» можно использовать только для двигателей, имеющих возможность подключения по обеим схемам. При пуске наблюдается уменьшение пускового момента на треть от номинального. Если переключение произойдет до того, как двигатель разгонится, ток увеличится до значений, соответствующих току прямого пуска.

При пуске переключением «звезда-треугольник» неизбежны резкие скачки токов, в отличие от плавного нарастания при прямом пуске. В момент переключения на «треугольник» на двигатель не подается напряжение и скорость вращения может резко снизится. Для восстановления частоты оборотов требуется увеличение тока.

Перейти в каталог продукции: Частотные преобразователи

Особенности подключения электродвигателя звездой и треугольником

Асинхронные электродвигатели зарекомендовали себя в работе такими показателями, как надежность в эксплуатации, возможность получения большой мощности крутящего момента, отличной производительностью. Важным показателем работы этих двигателей является способность переключений на соединение «звездой» и «треугольником» — а это стабильность при эксплуатации. Каждое соединение имеет свои достоинства, которые необходимо понимать при правильном применении асинхронных электродвигателей.

Оптимальный выбор подключения электродвигателя

Преобразование «звезды» в «треугольник» в асинхронном электродвигателе, а также способность к ремонту обмоток электродвигателя, и сравнительно с другими двигателями невысокая стоимость в совокупности со стойкостью к механическим воздействиям сделали этот вид двигателей наиболее популярными. Основным параметром, который характеризует достоинство асинхронных двигателей, является простота в конструкции. При всех достоинствах этого типа электрических двигателей он имеет и отрицательные моменты при эксплуатации.

На практике трехфазные асинхронные электродвигатели к сети могут присоединяться по схеме «звезда» и «треугольник». Подключение «звездой» — это когда концы статорной обмотки обираются в одну точку, и напряжение сети 380 вольт подается на начало каждой из обмоток, схематично этот вид соединения обозначается знаком (Y).

Если в коммутирующей коробке подключения электродвигателя выбирается вариант «треугольник», надо статорные обмотки соединить последовательно:

  • конец первой обмотки — с началом второй;
  • подсоединение конца «второй» — с началом третьей;
  • конец третьей — с началом первой.

Схемы подключения электродвигателя

Специалисты, не вдаваясь в основы электротехники, приводят тот факт, что подключенные по схеме «звезда» электродвигатели работают мягче, чем включенные по схеме треугольник (Δ). Это хорошая схема для небольшой мощности двигателей. Они также акцентируют внимание на том факте, что при мягкой работе, когда используется схема «звезда» (Y), электродвигатель не набирает паспортной мощности.

Выбирая оптимальный вариант подключения электродвигателя, следует рассмотреть тот факт, что соединение треугольником (Δ) дает возможность двигателю набирать максимальную мощность, но значение пускового тока значительно возрастает.

Сравнивая показатели мощности, это основное различие соединений «звезда» и «треугольник» (Y, Δ), эксперты отмечают, что электродвигатели, имеющие соединение «звездой» (Y), обладают мощностью в 1,5 раза ниже, чем соединенные «треугольником» (Δ).

Для снижения параметров тока в момент пуска в отличающихся схемах включения (Δ) – (Y) рекомендуется использовать подключение двигателя «звездой и треугольником», комбинированную схему включения. Комбинированный, или его еще называют смешанный, вид подключения рекомендуется выполнять для электрических моторов с большой паспортной мощностью.

Читать еще:  Хороший двигатель бмв м20

Когда включается схема соединения «звезда» (Y) и (Δ), с начала запуска работает соединение «звезда» (Y), после набора электродвигателем достаточных оборотов происходит переключение на соединение «треугольник» (Δ). Существуют устройства автоматического переключения соединений электродвигателя. Рассмотрим, чем отличаются схемы пуска электромоторов и в чем между ними разница.

Как управлять переключениями электродвигателя

Часто для пуска электрического двигателя большой мощности используется переключение соединения «треугольник» в «звезду», это необходимо для снижения параметров тока при пуске. Иными словами, пуск двигателя происходит в режиме «звезда», а вся работа осуществляется на соединении «треугольник». Для этой цели используется контактор на три фазы.

Необходимо при автоматическом переключении выполнить обязательные условия:

  • сделать блокировку контактов от одновременного срабатывания;
  • обязательное исполнение работы, с задержкой времени.

Задержка времени необходима для 100%-го отключения соединения «звезда», иначе при включении соединения «треугольник» возникнет между фазами КЗ. Используется реле времени (РВ), которое выполняет задержку переключения на интервал от 50 до 100 миллисекунд.

Какими способами можно сделать задержку времени переключений

Когда применяется схема «звезда и треугольник», надо обязательно выполнять задержку времени включения соединения (Δ), пока не отключится соединение (Y), специалистами отдается предпочтение трем методам:

  • с помощью контакта нормально разомкнутого в реле времени, который проводит блокировку схемы «треугольник», когда происходит пуск электродвигателя, а момент переключения контролирует токовое реле (РТ);
  • используя таймер в реле времени современного исполнения, который имеет способность переключать режимы с интервалом от 6 до 10 секунд.

Стандартная схема переключения

Классический вариант переключения со «звезды» на «треугольник» специалистами считается надежным способом, он не требует больших затрат, прост в исполнении, но, как и любой другой способ, имеет недостаток — это габаритные размеры РВ (реле времени). Этот тип РВ гарантированно выполняет задержку времени намагничиванием сердечника, а чтобы размагнитить его, требуется время.

Схема смешанного (комбинированного) включения работает следующим образом. Когда оператор включает трехфазный выключатель (АВ), пускатель электродвигателя приготовлен к действию. Через контакты кнопки «Стоп», нормально замкнутого положения и через нормально разомкнутые контакты кнопки «Пуск», которую нажимает оператор, электрический ток проходит в катушку контактора (КМ). Контакты (БКМ) обеспечивают самоподхват силовых контактов и удерживают их во включенном положении.

Реле в схеме (КМ) обеспечивает способность отключения оператором кнопкой «Стоп» электрический двигатель. Когда «фаза управления» проходит через пусковую кнопку, она также проходит замкнутые нормально расположенные контакты (БКМ1) и контакты (РВ) — запускается контактор (КМ2), силовые контакты его обеспечивают подачу напряжения на соединение (Y), начинается раскрутка ротора электродвигателя.

Когда оператор осуществляет пуск двигателя, контакты (БКМ2) в контакторе (КМ2) размыкаются, это порождает неработающее состояние силовых контактов (КМ1), которые обеспечивают питание соединения двигателя Δ.

Токовое реле (РТ) срабатывает практически сразу из-за высоких значений тока, которое включено в цепь токовых трансформаторов (ТТ1) и (ТТ2). Управляющая цепь катушки контактора (КМ2) шунтируется контактами токового реле (РТ), что не дает сработать (РВ).

В цепи контактора (КМ1) блок контактов (БКМ2) размыкается при запуске (КМ2), что не дает сработать катушке (КМ1).

С набором нужного параметра оборотов вращения ротора двигателя контакты токового реле размыкаются, так как пусковой ток уменьшается в управлении контактора (КМ2), одновременно с размыканием контактов, подающих напряжение на соединение обмотки (Y), БКМ2 соединяются, что приводит в рабочее положение контактор (КМ1), а в его цепи блок контактов БКМ2 размыкается, и, как следствие, обесточивается РВ. Преобразование включения «треугольника» в «звезду» происходит после остановки двигателя.

Важно! Временное реле отключается не сразу, а с задержкой, что дает некоторое время в цепи (КМ1) контактам реле быть замкнутым, этим обеспечивается пуск (КМ1) и работа двигателя по схеме «треугольник».

Недостатки стандартной схемы

Несмотря на надежность работы классической схемы переключения с одного соединения на другое соединение электрического двигателя большой мощности, она имеет свои неудобства:

  • надо правильно делать расчет нагрузки на вал электродвигателя, иначе он будет долго набирать обороты, что не даст быстро сработать токовому реле и затем переключиться на работу по соединению Δ, а также в этом режиме крайне нежелательно долго эксплуатировать двигатель;

Вывод

Важным условием при использовании схемы подключения «звезда-треугольник» является правильный расчет нагрузки на вал электродвигателя. Кроме этого нельзя отрицать тот факт, что когда отключается контактор одного соединения Y, а двигатель еще не набрал нужных оборотов, срабатывает фактор самоиндукции, и в сеть поступает повышенное напряжение, что может вывести из рабочего состояния другое рядом включенное оборудование и приборы.

Специалисты рекомендуют электрические двигатели, имеющие среднюю величину мощности, запускать по схеме Y, это дает мягкую работу и плавный пуск. Отличаются методики выбора включения и по имеющемуся напряжению на объекте, по нагрузке.

Ссылка на основную публикацию
Adblock
detector