Цикл работы двигателя двс

Цикл работы двигателя двс

Статья посвящена перспективному направлению развития поршневых двигателей внутреннего сгорания — реализации шеститактных рабочих процессов. В статье представлен обзор возможных вариантов осуществления шеститактных циклов известных типов двигателей. Наибольший интерес представляет шеститактный цикл с двумя рабочими ходами поршня, один из которых осуществляется под действием давления продуктов сгорания топлива, а второй — под действием давления пара, образующегося в результате подачи воды в цилиндр. Такой цикл реализуется в двигателе Кроуэра. Показано, что шеститактный цикл имеет ряд преимуществ перед четырехтактным: при его реализации улучшаются экономические и экологические показатели работы двигателя, снижается температурный уровень деталей, что положительно сказывается на ресурсных показателях. На основании опубликованных индикаторных диаграмм шеститактных двигателей построены диаграммы суммарных крутящих моментов четырехцилиндровых двигателей, работающих по четырехтактному и шеститактному циклам. При этом выявлено, что реализация шеститактного рабочего цикла при дополнительном впрыске воды в цилиндр приводит к некоторому ухудшению равномерности чередования рабочих ходов и равномерности крутящего момента. Применение особых схем коленчатых валов может способствовать улучшению этих показателей. Даны рекомендации по использованию в шеститактных двигателях коленчатых валов, имеющих крестообразные схемы. Представленная методика исследований может быть использована для выбора предпочтительной конструкции коленчатых валов для двигателей с различным числом цилиндров. Учитывая необходимость подготовки и хранения дистиллированной воды при реализации шеститактного цикла, можно сделать вывод о возможности использования шеститактных двигателей в составе судовых энергетических установок. Указано на необходимость продолжения исследования кинематики, динамики и виброактивности шеститактных двигателей.

Ключевые слова

шеститактный двигатель, экономические и экологические показатели, порядок рабочих ходов, равномерность угловой скорости и крутящего момента, схемы коленчатых валов

Читать полный текст статьи: PDF

Список литературы

Ерофеев В. Л. Энергетический и эксергетический подходы к оценке повышения эффективности тепловых двигателей / В. Л. Ерофеев, В. А. Жуков, А. С. Пряхин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. — 2017. — Т. 9. — № 5. — C. 1017-1026. DOI: 10.21821/2309-5180-2017-9-5-1017-1026.
Кайдаш Н. Ф. Впрыск воды в авиационные двигатели / Н. Ф. Кайдаш, К. К. Папок, Е. В. Любановский, Ю. П. Блонский. — М.: Ред.-изд. отдел Аэрофлота, 1946. — 96 с.
Белоусов Е. В. Влияние на рабочий процесс среднеоборотного судового дизеля путем впрыскивания воды в рабочий цилиндр / Е. В. Белоусов, М. С. Агеев, В. Н. Свиридов // Двигатели внутреннего сгорания. — 2010. — № 1. — С. 40-43.
Mohandas G. Review of Six Stroke Engine and Proposal for Alternative Fuels / G. Mohandas, V. Desai-Patil // SSRG International Journal of Mechanical Engineering (SSRG-IJME). — 2015. — Vol. 2. — Is. 10. — Pp. 19-24.
Pat. 4513568 USA, IPC F02B 75/021 Method for the transformation of thermal energy into mechanical energy by means of a combustion engine as well as this new engine / Roger Bajulaz; USA assignee. — № US06442799; app. 18.11.1982; pub. 30.04.1985. — 9 p.
Pat. 4809511 USA, IPC F02G 1/02 Internal Combustion Engine / Roger Bajulaz; USA assignee. — № US07059218; app. 08.06.1987; pub. 07.03.1989. — 12 p.
Pande P. H. Velozeta Six Stroke Engine / P. H. Pande // International Journal of Research in Advent Technology. — 2015. — Special Issue. — Pp. 215-219.
Application US 20140157758 A1, IPC F01N 3/2066, F01N 3/103 After-treatment system and method for six-stroke combustion cycle / Ronald Silver Scott, B. Fiveland, D. Ryan Williams; Caterpillar Inc. assignee. App. 12.06.2014. — 13 p.
Быстров О. И. Повышение экономических и экологических показателей дизеля путем реализации комбинированного шеститактного цикла: автореф. дис. … канд. техн. наук: 05.04.02 / О. И. Быстров. — Челябинск: Южно-Уральский гос. ун-т, 2008. — 16 с.
Соболенко А. Н. Термодинамичecкий КПД обобщенного теоретического цикла шеститаткного ДВС / А. Н. Соболенко // Вестник Тихоокеанского государственного университета. — 2015. — № 1 (36). — С. 141-150.
А. с. SU 1617169 A1, МПК F01В 75/02. Способ работы шеститактного двигателя внутреннего сгорания / А. Ф. Косяк, В. И. Васильев, В. Н. Осипов — № 4380121/25-06; Заявлено 18.02.88; Опубл. 30.12.90, Бюл. № 48.
Романов С. В. Повышение топливной экономичности двигателей сельскохозяйственных машинно-тракторных агрегатов путем применения водной инжекции: дис. … канд. техн наук: 05.20.01 / С. В. Романов. — Троицк: Южно-Уральский гос. аграрн. ун-т, 2017. — 207 с.
Karmalkar C. Analyzing the implementation of six stroke engine in a Hybrid Car / C. Karmalkar, V. Raut // International Journal of Mechanical Engineering and Applications. — 2014. — Vol. 2. — No. 1. — Pp. 1-4. DOI: 10.11648/j.ijmea.20140201.11.
Лефёров А. А. Актуальность и проблемы совершенствования цикла ДВС применением непосредственного впрыска воды / А. А. Лефёров, Н. Д. Куприянов // Труды МАИ. — 2010. — № 39. — С. 10.
Юша В. Л. Анализ эффективности идеального термодинамического цикла комбинированного двигателя внутреннего сгорания с парогазовым рабочим телом / В. Л. Юша, Г. И. Чернов // Омский научный вестник. — 2009. — № 3 (83). — С. 154-158.
Prasath B. R. Hydrogen operated internal combustion engines-a new generation fuel / B. R. Prasath, Leelakrishnan, N. Lokesh, H. Suriyan, E. Guru Prakash, K. O. Mustaq Ahmed // International Journal of Emerging Technology and Advanced Engineering. — 2012. — Vol. 2. — Is. 4. — Pp. 52-57.
Deepak Kumar. Hydrogen Fuel in 6-Stroke IC Engines and Reduction of Noxemission Using Hollow Fiber Membrane Module / Deepak Kumar, N. Gowtham // International Journal of Mechanical and Production Engineering (IJMPE). — 2015. — Vol. 3. — Is. 3. — Pp. 58-63.
Bhardwaj S. Effect of Brown Gas On the Performance of a Four Stroke Gasoline Engine / S. Bhardwaj, A. S. Verma, S. K. Sharma // International Journal of Emerging Technology and Advanced Engineering. — 2014. — Vol. 4. — Is. 1. — Pp. 300-308.
Leelakrishnan E. Performance and Emission Characteristics of Brown’s Gas Enriched Air in Spark Ignition Engine / E. Leelakrishnan, N. Lokesh, H. Suriyan // International Journal of Innovative Research in Science, Engineering and Technology. — 2013. — Vol. 2. — Is. 2. — Pp. 393-404.
Alkhaniya A. Concept of Six Stroke Engine / A. Alkhaniya, A. Kotiyal // International Journal of Mechanical and Industrial Technology. — 2014. — Vol. 2. — Is. 2. — Pp. 1-4.
Makheeja D. A Review: Six Stroke Internal Combustion Engine / D. Makheeja // Journal of Mechanical and Civil Engineering (IOSR-JMCE). — 2015. — Vol. 12. — Pp. 7-11.
Kandari S. Six Stroke Engine / Kandari, I. Gupta // International Journal of Engineering Research & Technology (IJERT). — 2013. — Vol. 2. — Is. 10. — Pp. 884-889.
Яманин А. И. Численное моделирование виброактивности поршневых двигателей с продолженным расширением рабочего тела / А. И. Яманин, В. А. Жуков // Двигатели внутреннего сгорания. — 2014. — № 1. — С. 27-31.
Жуков В. А. Анализ алгоритмов расчета кинематики кривошипно-шатунных механизмов с прицепными шатунами / В. А. Жуков, А. И. Яманин // Вестник Государственного университета морского и речного флота имени адмирала С.О. Макарова. — 2016. — № 2 (36). — С. 109-118. DOI: 10.21821/2309-5180-2016-8-2-109-118.
Яманин А. И. Силовой анализ поршневого двигателя с использованием динамических моделей кривошипно-шатунного механизма / А. И. Яманин, В. А. Жуков, С. О. Барышников // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. — 2018. — Т. 10. — № 1. — С. 191-200. DOI: 10.21821/2309-5180-2018-10-1-191-200.
Яманин А. И. Динамические расчеты поршневых двигателей в среде Microsoft Office Excel / А. И. Яманин. — Ярославль: Изд-во ЯГТУ, 2014. — 111 с.

Читать еще:  Юмз двигатель сколько цилиндров

Об авторах

Жуков Владимир Анатольевич — доктор технических наук, профессор

ФГБОУ ВО «ГУМРФ имени адмирала С. О. Макарова»

Яманин Александр Иванович — доктор технических наук, профессор

ФГБОУ ВО «Ярославский государственный технический университет»

Мельник Олеся Владимировна — кандидат технических наук

Двигатель. Общее устройство и рабочий цикл двигателя внутреннего сгорания. Порядок работы цилиндров двигателя.

На автомобилях устанавливают двигатели внутреннего сгорания, в которых используется давление расширяющихся газов, образующихся при сгорании топлива непосредственно в цилиндре. Однако следует отметить, что фактически сжигается рабочая смесь, состоящая из горючей смеси и остатков отработавших газов предыдущего рабочего цикла.

По способу образования горючей смеси (пары топлива и воздух) и виду используемого топлива различают двигатели:

  • с внешним смесеобразованием (карбюраторные, работающие на бензине, и газосмесительные, работающие на горючем газе);
  • с внутренним смесеобразованием (дизельные, работающие на дизельном топливе).

Воспламенение рабочей смеси осуществляется с помощью электрического разряда или высокой степени сжатия (дизельные двигатели). В результате сгорания рабочей смеси образующиеся газы давят на поршень, придавая ему прямолинейное движение, которое с помощью шатуна и коленчатого вала преобразуется во вращательное движение маховика. Чтобы поддержать работу двигателя, необходимо периодически очищать камеру сгорания цилиндра от отработавших газов и наполнять ее свежим зарядом горючей смеси, что осуществляется с помощью выпускных и впускных клапанов.

Поршень, перемещаясь в цилиндре, совершает возвратно-поступательное движение. Крайние положения, в которых поршень меняет направление движения, соответственно называются верхней и нижней мертвыми точками (ВМТ и НМТ).

Расстояние, проходимое поршнем между ВМТ и НМТ, называется ходом поршня. Процесс, происходящий в цилиндре за один ход поршня, называют тактом.

Пространство в цилиндре, освобождаемое поршнем при его перемещении от ВМТ к НМТ, называется рабочим объемом цилиндра. Наименьшее пространство в цилиндре образуется при нахождении поршня в ВМТ и называется объемом камеры сгорания. Рабочий объем цилиндра и объем камеры сгорания составляют полный объем цилиндра. Сумма всех рабочих объемов цилиндров называется литражом двигателя и выражается в кубических сантиметрах. Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия, которая является важным показателем двигателя. С повышением степени сжатия повышается экономичность и мощность двигателя.

Для выполнения основного рабочего такта, при котором происходит сгорание рабочей смеси и расширение газов, не обходимо выполнить подготовительные такты: впуск горючей смеси, сжатие, и заключительный — выпуск отработавших газов. Таким образом, непрерывность работы двигателя достигается совокупностью периодически повторяющихся в цилиндре процессов — тактов, объединяющихся в рабочий цикл. Так как рабочий цикл осуществляется за четыре хода поршня, автомобильные двигатели называются четырехтактными.

Последовательность чередования тактов в рабочих циклах двигателей с внешним смесеобразованием такая же, как и в дизеле. Отличие состоит только в степени сжатия и способе воспламенения рабочей смеси.

Впуск — поршень движется от ВМТ к НМТ. Открыт впускной клапан. Вследствие увеличения объема внутри цилиндра создается разряжение и происходит заполнение цилиндра свежим зарядом горючей смеси.

Сжатие — поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты. Объем над поршнем уменьшается. Рабочая смесь сжимается, благодаря чему улучшаются испарение и перемешивание паров топлива с воздухом.

Рабочий ход (сгорание и расширение) — происходит воспламенение рабочей смеси от электрического разряда в двигателях с внешним смесеобразованием или вследствие высокой степени сжатия — в дизельных двигателях. Под давлением расширяющихся газов поршень перемещается от ВМТ к НМТ. Впускной и выпускной клапаны закрыты. Высокое давление газов, температура их достигает 9000°С.

Выпуск — поршень двигается от НМТ к ВМТ. Открыт выпускной клапан. Происходит вытеснение отработавших газов из камеры сгорания цилиндра.

Для обеспечения нормальной работы двигатель внутреннего сгорания имеет следующие механизмы и системы:

  • кривошипно-шатунный механизм;
  • газораспределительный механизм;
  • систему охлаждения;
  • систему смазки;
  • систему питания;
  • систему зажигания.

Дизельные двигатели системы зажигания не имеют, так как воспламенение рабочей смеси в цилиндрах двигателя происходит за счет высокой степени сжатия.

Кривошипно-шатунный механизм воспринимает давление газов при их расширении и преобразует прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала двигателя.

Газораспределительный механизм предназначен для своевременного впуска в камеру сгорания цилиндра двигателя необходимого заряда горючей смеси и выпуска из него отработавших газов.

Система охлаждения служит для отвода излишнего тепла от деталей двигателя и для поддержания оптимального температурного режима работающего двигателя. Существуют жидкостная и воздушная системы охлаждения двигателя.

Система смазки предназначена для подачи смазки к трущимся поверхностям деталей двигателя, отвода тепла от деталей; уноса механических частиц, образующихся в результате трения, и очистки моторного масла.

Система питания служит для приготовления горючей смеси в карбюраторных и газосмесительных двигателях, подачи ее в камеры сгорания цилиндров двигателя и удаления продуктов сгорания. В дизельных двигателях система питания обеспечивает впрыск топлива в мелкораспыленном виде в цилиндры.

Система зажигания предназначена для преобразования тока низкого напряжения в ток высокого напряжения с целью образования электрического разряда в камере сгорания цилиндра двигателя для воспламенения рабочей смеси.

В одноцилиндровом двигателе на один рабочий ход приходится три подготовительных такта, вследствие чего такой двигатель работает неравномерно. Более того, масса двигателя, приходящаяся на единицу его мощности, будет велика. С целью устранения этих недостатков применяют двигатели с большим числом цилиндров, шатуны которых связаны с кривошипами общего коленчатого вала. Конструктивно коленчатый вал изготовлен таким образом, что рабочие такты в цилиндрах не совпадают, а подготовительные такты приходятся на рабочие такты других цилиндров. В этом случае роль маховика снижается, что позволяет уменьшить его массу, и, следовательно, уменьшается общая масса двигателя, приходящаяся на единицу его мощности. Достигается равномерность в работе двигателя.

В многоцилиндровых двигателях цилиндры располагаются в один ряд вертикально или наклонно, а также в два ряда под углом 90° (или У-образное расположение).

Что такое рабочий цикл двигателя автомобиля

Существует несколько различных типов двигателей, при этом на колесном, гусеничном, водном и даже иногда воздушном транспорте (грузовые и легковые авто, спецтехника, моторные лодки, самолеты и т.п.), нередко можно встретить двигатель внутреннего сгорания (ДВС).

Так или иначе, широкое распространение силовой агрегат данного типа получил благодаря своей автономности, универсальности, а также целому ряду других преимуществ. При этом агрегаты имеют много различных параметров и характеристик, среди которых стоит отдельно выделить рабочий цикл. Далее мы поговорим о том, что означает рабочий цикл автомобильного двигателя внутреннего сгорания.

Рабочий цикл ДВС: что нужно знать

Если рассматривать принцип работы двигателя внутреннего сгорания, топливо в таких агрегатах сгорает в закрытой камере (камера сгорания), куда подается готовая топливно-воздушная смесь или воздух и топливо по отдельности (дизельные агрегаты и моторы с прямым впрыском).

Читать еще:  Что такое время работы двигателя без движения

Работа такого мотора основана на том, что во время сгорания топлива происходит расширение газов. Указанные газы становятся причиной роста давления в цилиндре, благодаря чему поршень получает «толчок». Затем энергия, переданная на поршень, преобразуется в механическую работу. Давайте рассмотрим принцип работы двигателя, а также рабочие циклы более подробно.

Двигатели, которые устанавливаются на автомобили, обычно работают по четырехтактному циклу (четырехтактный двигатель). Это значит, рабочий цикл совершается за два оборота коленвала и четыре хода поршня. Работу такого ДВС можно разделить на такты: такт впуска, такт сжатия, такт рабочего хода, такт выпуска.

Как работает четырехтактный бензиновый двигатель

Чтобы было понятнее, начнем с того, что когда поршень в цилиндре во время работы ДВС начинает занимать крайние положения (максимально приближен или удален по отношению к оси коленчатого вала), эти положения принято называть ВМТ и НМТ. ВМТ означает верхняя мертвая точка, тогда как НМТ значит нижняя мертвая точка. Теперь вернемся к тактам.

  • На такте впуска коленчатый вал двигателя делает первую половину оборота, при этом поршень из ВМТ движется в НМТ. В этот момент открыт впускной клапан, а выпускной клапан закрыт. При движении поршня вниз в цилиндре образуется разрежение, в результате чего в цилиндр «засасывается» топливно-воздушная смесь через открытый впускной клапан. Рабочая смесь состоит из воздуха и распыленного топлива (в некоторых двигателях на такте впуска поступает только воздух).
  • Следующим тактом является сжатие. После того, как произойдет наполнение цилиндра топливно-воздушной смесью, коленвал начинает совершать вторую половину оборота. В этот момент поршень начинает подниматься из НМТ в ВМТ. При этом впускной клапан уже закрыт. Далее поршень сжимает смесь в герметично закрытом цилиндре. Чем больше уменьшается объем цилиндра, тем сильнее сжимается смесь. Результатом такого сжатия является повышение температуры смеси.
  • К тому времени, когда поршень подойдет к концу такта сжатия (практически дойдет до ВМТ), смесь в бензиновых двигателях воспламеняется от внешнего источника (электрическая искра на свече зажигания). Затем топливный заряд сгорает, в результате в цилиндре резко повышается температура и давление. В этот момент поршень уже перемещается обратно из ВМТ в нижнюю мертвую точку, принимая на себя энергию расширяющихся газов.
  • После того, как поршень почти дойдет до НМТ в конце рабочего хода, происходит открытие выпускного клапана. После этого давление в цилиндре снижается, несколько падает и температура. Затем начинается такт выпуска. В это время коленчатый вал совершает последний полуоборот, при этом поршень снова поднимается из НМТ в ВМТ, буквально «выталкивая» отработавшие газы из цилиндра через открытый выпускной клапан в выпускной коллектор.

Работа четырехтактного дизельного ДВС

Хотя дизель конструктивно похож на бензиновый мотор, в дизельных двигателях изначально сжимается только воздух, после чего прямо в камеру сгорания впрыскивается дизтопливо. При этом воспламенение такой смеси происходит самостоятельно (под большим давлением, а также в результате контакта с нагретым от сильного сжатия воздухом).

Простыми словами, воздух сначала сжимается и нагревается, в среднем, до 650 градусов по Цельсию. В самом конце такта сжатия в камеру сгорания топливная форсунка впрыскивает солярку, затем смесь дизтоплива и воздуха самовоспламеняется.

С учетом данной особенности на такте впуска (поршень движется из ВМТ в НМТ), за счет разряжения в цилиндр подается воздух через открытый впускной клапан. Давление и температура воздуха в этот момент имеют низкие показатели.

Затем начинается сжатие, поршень поднимается из НМТ в верхнюю мертвую точку. Как и в случае с бензиновым мотором, впускной и выпускной клапаны полностью закрыты, что позволяет поршню сильно сжать воздух.

Если учесть, что давление воздуха в цилиндре высокое (необходимо для его нагрева), дизельное топливо в момент впрыска должно также подаваться под очень высоким давлением. Фактически, форсунке нужно «продавить» солярку в камеру сгорания, в которой уже находится сильно сжатый поршнем и горячий воздух.

Для решения этой задачи многие системы питания дизельного двигателя имеют ТНВД (топливный насос высокого давления). Также в схеме могут быть использованы насос-форсунки (форсунка и насос объединены в одно устройство). Еще существуют варианты, когда питание двигателя реализовано при помощи так называемого «аккумулятора» высокого давления. Речь идет о системах Common Rail.

После воспламенения заряда происходит расширение газов и начинается рабочий ход поршня. Температура в результате горения смеси повышается, происходит увеличение давления. Указанное давление газов «толкает» поршень, происходит рабочий ход. Завершающим этапом становится выпуск, когда поршень после совершения рабочего хода снова поднимается из НМТ в ВМТ. Затем весь описанный выше процесс (рабочий цикл двигателя) повторяется.

Синхронная работа нескольких цилиндров

Выше были описан принцип работы ДВС, при этом рассматривались процессы в одном цилиндре. Однако, как известно, большинство двигателей являются многоцилиндровыми. Для того чтобы добиться ровной и синхронной работы всех цилиндров, рабочий ход поршня в каждом отдельном цилиндре должен происходить через равный промежуток времени (одинаковые углы поворота коленвала).

В зависимости от компоновки двигателя и его конструктивных особенностей последовательность (порядок работы) может быть разной. Дело в том, что двигатели бывают не только рядными, но и V-образными.

Во втором случае такая компоновка позволяет разместить цилиндры под углом, при этом становится возможным увеличить общее количество цилиндров без увеличения самой длины блока цилиндра двигателя. Такое решение позволяет разместить мощный многоцилиндровый ДВС под капотом не только большого внедорожника или грузовика, но и легкового авто.

Обороты и мотресурс двигателя. Недостатки езды на низких и высоких оборотах. На каком количестве оборотов мотора ездить лучше всего. Советы и рекомендации.

Зависимость мощности и крутящего момента двигателя от числа оборотов коленвала. Крутящий момент бензинового и дизельного ДВС, полка момента, эластичность.

Что означает понятие объем двигателя. Определение рабочего объема мотора. Классы авто в зависимости от объема ДВС, плюсы и минусы большого объема двигателя.

Почему дизельный мотор имеет больший коэффициент полезного действия по сравнению с двигателями на бензине. Крутящий момент и обороты, энергия дизтоплива.

Что нужно знать об электромобилях. Устройство машин с электродвигателем, основные характеристики. Эксплуатация и обслуживание в теории и на практике.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Рабочий цикл четырехтактного двигателя — как это работает

  • Рабочий цикл четырехтактного двигателя — как это работает
  • Рабочий цикл четырехтактного двигателя
  • Двухтактный двигатель – особенности работы
  • Рабочий цикл двухтактного двигателя – достоинства и недостатки

В числе процессов, характеризующих работу мощных и производительных машин и механизмов, следует отметить рабочий цикл четырехтактного двигателя. Это совокупность процессов, повторяющихся в определенной последовательности, во время которых цилиндр наполняется рабочей смесью, после чего происходит ее сжатие и воспламенение. Газы, образовавшиеся при сгорании, расширяются, а затем – удаляются из цилиндра.

  • Рабочий цикл четырехтактного двигателя
  • Двухтактный двигатель – особенности работы
  • Рабочий цикл двухтактного двигателя – достоинства и недостатки

Рабочий цикл четырехтактного двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

Такт впуска

Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07—0,095 МПа, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр. От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75—125 °С.

Читать еще:  Что такое кованый двигатель

Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65—0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.

Такт сжатия

После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан закрывается, а выпускной закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8—1,5 МПа, а температура газов 300— 450 °С.

Такт расширения, или рабочий ход

В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5—5 МПа, а температура газов 2100—2400 °С.

При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3—0,75 МПа, а температура — до 900—1200 °С.

Такт выпуска

Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105—0,120 МПа, а температура газов в начале такта выпуска составляет 750— 900 °С, понижаясь к его концу до 500—600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.

Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06—0,12. По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

Двухтактный двигатель – особенности работы

Весь цикл работы двухтактного двигателя происходит за один оборот коленвала. Это позволяет на выходе получать приблизительно в 1,4-1,8 раз большую мощность, с того же рабочего объема, имея те же самые обороты двигателя. Разумеется, коэффициент полезного действия у таких агрегатов значительно ниже, чем у тех же 4 тактных моделей. Это используется при создании тяжелых и низкооборотных двигателей судов. Здесь они напрямую соединяются с гребным валом. Нашли свое применение такие модели и в мотоциклах.

Это так же приводит к тому, что модели, работающие в 2 такта, очень сильно греются. Здесь выделятся большая тепловая энергия. В некоторых случаях приходится подключать к ним дополнительное охлаждение, чтобы агрегат всегда находился в работоспособном состоянии. Однако, можно выделить и плюс подобной технологии. Ввиду того, что работа поршня ограничивается 2 тактами, он совершает гораздо меньше движений за единицу времени, поэтому потери на трение минимальны. Это напрямую отражается на износе основных рабочих деталях двухтактного двигателя.

Еще одной актуальной проблемой для данной модели является тот факт, что постоянно нужно искать компромисс между потерями свежего заряда и качеством продувки. Да, принцип работы заставляет ведущих инженеров и техников трудится над созданием универсальной системы, которая бы сводила к минимуму потери. 4 тактный двигатель вытесняет отработанные газы в тот момент, когда его поршень находится в верхней мертвой точке. Здесь ситуация коренным образом меняется. Вся отработка вылетает в трубу в тот момент, когда цилиндр практически полностью свободен, то есть этот процесс захватывает его объем полностью. Качество обдува играет в этом очень важную роль.

Именно поэтому не всегда удается разделить свежую рабочую смесь от выхлопных газов. В любом случае они будут смешиваться. Особенно отчетливо такая проблема выделяется у карбюраторных моделей моторов, которые напрямую подают готовое к работе горючее в цилиндр. Естественно, в данном случае стоит говорить о большем количестве используемого воздуха. Отсюда возникает необходимость применения сложных по структуре и составу воздушных фильтров. 4 тактный двигатель обделен этим недостатком.

Принцип работы данной модели двигателя говорит о том, что его применение может быть ограничено ввиду особенностей конструкции и большого количества потерь. Однако от 2 тактов еще никто не отказывается, создавая все больше устройств на его основе. Стоит отметить, что сегодня на рынке представлено множество различных механизмов, которые используют как 4 тактный двигатель внутреннего сгорания, так и двухтактный. Кстати, тот экземпляр, о котором мы решили поговорить сегодня, может иметь не только простейшее строение, в некоторых механизмах используются достаточно сложные его варианты.

Рабочий цикл двухтактного двигателя – достоинства и недостатки

Самое главное преимущество двухтактных двигателей – более высокая, по сравнению с четырехтактными, литровая мощность. Дело здесь в том, что при равном количестве цилиндров и количестве оборотов коленчатого вала в минуту, каждый цилиндр совершает рабочий ход вдвое чаще. При этом, за счет того, что фактический рабочий ход двухтактного двигателя короче (он укорочен за счет процессов газообмена), реально объем двигателя увеличивается на 50-60%.

Не менее важное преимущество – компактность. Благодаря этому качеству двухтактные двигатели нашли широкое применение не только в небольших транспортных средствах наподобие снегоходов, но и в садовой технике, а также инструментах (к примеру, в бензопилах). Кроме того, отсутствие газораспределительного механизма заметно делает конструкцию проще и дешевле в производстве. Есть у двухтактных ДВС и существенные недостатки. Они расходуют больше топлива впустую, так как при открытии выпускного окна в систему выхлопа попадает часть несгоревшей смеси. Система смазки классического двухтактного мотора крайне примитивна – бензин смешивается с маслом заранее, и оба эти вещества попадают в камеру сгорания одновременно. Обусловлено это тем, что организовать масляную ванну в картере невозможно – картер участвует в процессе газообмена.

В результате масло, не пошедшее на смазывания стенок цилиндра, сгорает вместе с топливом. Ресурс двухтактного двигателя также значительно меньше, главным образом, за счет высоких оборотов коленвала. По этой причине в двигателях этого типа применяется только специальное высококачественное масло, разработанное для применения в двухтактных двигателях. Экологические параметры также оставляют желать лучшего: в выхлопе, из-за особенностей газораспределения, содержится большое количество СО и СН.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Ссылка на основную публикацию
Adblock
detector