Водород для двигатели своими руками

Ту-155: начало криогенной авиации

15 апреля 1988 года совершил первый полет самолет Ту-155, силовая установка которого работала на криогенном топливе – жидком водороде. Не имевший в то время мировых аналогов двигатель НК-88 был разработан на самарском двигателестроительном предприятии «Кузнецов». Инициатива же создания самого самолета, использовавшего криогенный вид топлива вместо авиационного керосина, принадлежала конструкторскому бюро «Туполев».

В середине 1970-х годов СССР, как и весь мир, испытывал энергетический кризис из-за дефицита добычи нефти. Поэтому активно обсуждалась возможность применения альтернативных видов топлива. Пожалуй, для XXI века с его экологическими проблемами эта тема еще более актуальна. Об истории создания уникального Ту-155 и криогенном будущем авиации – в нашем материале.

Рожденный «Холодом»

Прошедший в 2019 году авиасалон МАКС, помимо презентации целого ряда новинок отечественного военного и гражданского авиастроения, предоставил отличную возможность в прямом смысле прикоснуться к прошлому отечественной авиации. На статической стоянке аэродрома Жуковский была организована историческая экспозиция легендарных советских реактивных самолетов. Одно из центральных мест там занял Ту-155 – экспериментальный самолет с двигателем на криогенном топливе.

«Криогенный» переводится как «рожденный холодом». Речь идет о топливе, охлажденном до очень низких температур, когда газ переходит в жидкое состояние. Первым газом, с которым стали работать создатели Ту-155, стал водород. После самолет успел полетать и на сжиженном природном газе (СПГ).


Самолет Ту-155 на МАКС-2019

Научные работы по конструированию Ту-155 начались еще в 1970-е годы. Тогда в мировой энергетике назревал кризис – газовое топливо стало цениться дороже, чем нефтяное. Потребление нефти продолжало снижаться. Кстати, по подсчетам геологов, потенциальные запасы газа на планете в десятки раз превосходят запасы угля и нефти. При этом наша страна занимает первое место в мире по разведанным запасам природного газа.

В 1970-е годы советская Академия наук разработала программу НИОКР по внедрению водородной энергетики в народное хозяйство. В авиапроме эта программа получила соответствующее название – «Холод». Предусматривалось создание авиационных двигательных установок на криогенном топливе. Кроме экологической составляющей, был и другой пункт в пользу чистого топлива – развитие гиперзвуковых и авиационно-космических систем. В те годы вовсю шла работа над созданием «Бурана», а топливом одной из ступеней ракеты-носителя космического челнока были жидкие кислород и водород.

В середине 1980-х годов специалисты ОКБ А.Н. Туполева приступили к созданию самолета – летающей лаборатории, работающего на криогенном топливе. Базой для экспериментального лайнера стал пассажирский Ту-154.

В качестве авиационного топлива был использован жидкий водород – почти идеальное экологически чистое топливо выделяет при сгорании в основном воду и незначительное количество окислов азота. По теплотворной способности водород втрое превосходит традиционный авиационный керосин. Но в то же время водород взрывоопасен, хранить и транспортировать его можно только в жидком состоянии при очень низких температурах, близких к абсолютному нулю (–273 °С). И это представляет собой серьезную проблему.

«При проектировании летающей лаборатории пришлось существенно изменить компоновку Ту-154 и решить целый ряд сложнейших технических задач. В хвостовой части фюзеляжа, где располагался пассажирский салон, был оборудован герметичный отсек, и в нем установлен криогенный бак на 20 куб. метров жидкого водорода с экранно-вакуумной теплоизоляцией, которая долгое время сохраняет в баке температуру ниже минус 253 градусов по Цельсию», – рассказывает заместитель генерального директора ПАО «Туполев» по проектированию, НИР и ОКР Валерий Солозобов, принимавший непосредственное участие в создании Ту-155.


Экспериментальный турбореактивный двухконтурный двигатель НК-88 на Ту-155. Фото: Андрей Сдатчиков / Airwar.ru

Правый двигатель самолета заменили модифицированным двигателем НК-88, работающим на жидководородном топливе. Для его подачи вместо привычного насоса установили высоконапорный турбонасосный агрегат, наподобие тех, что используются в ракетных двигателях. Для обеспечения надежной взрыво- и пожаробезопасности самолета, из отсека с криогенным баком убрали почти всю электропроводку – источник возможного образования искры. Спроектировали и смонтировали дренажную систему, которая отводит из бака пары водорода на безопасное расстояние от двигателей и источников электричества. Всего было сконструировано более 30 дополнительных бортовых систем.

15 апреля 1988 года экипаж летчика-испытателя Владимира Севанькаева поднял в небо экспериментальный самолет Ту-155 с тремя двигателями, один из которых работал на жидком водороде. Это считается первым в мире полетом на криогенном топливе.

Водород и «синдром Гинденбурга»

На практике, при всех своих достоинствах, криогенная авиация оказалась не таким уж простым проектом. Водород заслужил репутацию самого взрывоопасного топлива. Довольно длительное время имела место своего рода водородная боязнь. Этот феномен даже получил имя – «синдром Гинденбурга» в память о гибели в 1937 году дирижабля «Гинденбург», наполненного водородом. Такая переоценка реальной опасности водорода сдерживала развитие водородной энергетики. При этом недооценивать опасность водорода также не стоит.

Экспериментальные полеты Ту-155 дали бесценный опыт для дальнейшего усовершенствования авиационных криогенных топливных систем. Следующим этапом проекта Ту-155 стало его переоборудование на более удобное в эксплуатации топливо – сжиженный природный газ.


Система заправки для самолета Ту-155

«Как и водород, СПГ значительно меньше загрязняет окружающую среду, его теплотворная способность на 15% выше, чем у авиационного керосина. Водород взрывоопасен, хранить и транспортировать его можно только в жидком состоянии при очень низких температурах, близких к абсолютному нулю, что представляет очень серьезную проблему. Хранить СПГ в жидком виде гораздо проще, температура может быть около –160 °С, что почти на 100 градусов выше, чем при хранении водорода», – поясняет Валерий Солозобов.

В январе 1989 года летающую лабораторию Ту-155 оснастили криогенным двигателем, работающим на СПГ. Первые же полеты показали, что по сравнению с керосином удельный расход топлива снижается примерно на 15%, а экономичность воздушного лайнера существенно возрастает.

Всего на Ту-155 было совершено 70 полетов: в пяти из них топливом служил водород, в остальных – сжиженный природный газ. Все полеты прошли без отказов самолетного криогенного комплекса и еще раз доказали, что расход топлива по сравнению с керосином меньше, при этом сопло двигателя остается чистым.

Люди, научившие не бояться водорода

Руководство страны высоко оценило достижение специалистов ОКБ А.Н. Туполева и смежных предприятий авиационной отрасли, участвующих в разработке Ту-155. Лауреатами премии Правительства Российской Федерации стали 15 участников работ, многие другие специалисты за участие в этой непростой работе удостоены высоких званий и правительственных наград.

Читать еще:  Двигатель aeb на холодную

Неоценимый вклад в создание и развитие отечественной авиации на криогенном топливе внесло огромное количество специалистов разного уровня. Куратором проекта в Министерстве авиационной промышленности был Леонид Михайлович Шкадов – замминистра авиапромышленности. Алексей Андреевич Туполев выступил инициатором проекта и его дальнейшего развития. В создании Ту-155 также принял участие великий инженер, академик Кузнецов Николай Дмитриеви ч .

Душой Ту-155, его руководителем в ОКБ А.Н. Туполева был Владимир Александрович Андреев. За силовую установку отвечал Валентин Всеволодович Малышев, внесший огромный вклад в успех благодаря глубоким знаниям и неуемной энергии. Под руководством будущего гендиректора предприятия «Туполев» Валентина Тихоновича Климова была разработана уникальная программа обеспечения безопасности, позволившая провести все работы без серьезных происшествий. Вячеслав Дмитриевич Борисов руководил созданием наземного комплекса и испытательных стендов на летной базе в Жуковском. Валерий Иванович Солозобов отвечал за производство, подготовку летных испытаний в КБ и разработку конструкции водородного бака, который был изготовлен под руководством Рудольфа Зашляпина на криогенном производстве Уралвагонзавода.


Владимир Александрович Андреев, руководитель проекта Ту-155 в ОКБ А.Н. Туполева

Также в работе активно участвовал высококвалифицированный состав ученых и инженеров Минобороны РФ, к примеру специальные испытания Ту-155 проводились на базе аэродрома Чкаловский. Также нельзя не сказать о вкладе выдающихся академиков Николая Павловича Лаверова, Анатолия Петровича Александрова, Валерия Алексеевича Легасова, ученых из Дубны Александра Григорьевича Зельдовича и Леонида Голованова, научивших не бояться водорода, а навсегда полюбить эту фантастическую жидкость. Кстати, система газового контроля для самолета была разработана в московском Опытно-конструкторском бюро автоматики (ОКБА) под руководством Юрия Михайловича Лужкова, будущего мэра Москвы.

В целом сформировалась замечательная команда из разных отечественных научных и производственных структур, создавшая самолет, который, как отмечают многие эксперты отрасли, сильно опередил свое время. К сожалению, уровень технологий того времени не позволил полноценно продолжить работу над данным проектом, но этот Ту-155 стал наглядным доказательством самой возможности создания криогенной авиации.

Криогенное будущее авиации

Разработка и применение новых типов источников энергии остается важной проблемой авиации в XXI веке, над решением которой работают специалисты и энтузиасты нового поколения. Звучат различные яркие идеи. Несколько лет назад калининградский школьник Сергей Горобец рассказал о своей электронной модели двигателя на криогенном топливе во время всероссийского открытого урока, который проводил Владимир Путин на площадке форума «ПроеКТОриЯ». Тогда юным изобретателем заинтересовались специалисты, а Госкорпорация Ростех предложила ему бесплатное обучение в одном из восьми вузов страны на выбор. Сейчас Сергей учится в Московском авиационном институте по специальности «Самолетостроение», а форум «ПроеКТОриЯ» посещает уже в качестве эксперта от Ростеха.

Как, какими темпами, на каких технологических основах будет расширяться применение новых типов источников энергии в авиации – покажет время. Предстоит еще многое сделать по разработке специальных бортовых систем и в сфере развития наземной инфраструктуры.

Исследователи могут ошибаться на десятки лет, но запасы нефти в какой-то момент, вероятнее всего, будут исчерпаны. Та страна, ученые и специалисты которой первыми найдут эффективные решения в области неисчерпаемых источников энергии, получит преимущество.

Одно остается бесспорным: у России имеется уникальный опыт в этой области, и наша страна всегда была богата на талантливых ученых и изобретателей.

Водород для двигатели своими руками

Работающий на водороде авиационный двигатель, разработку которого начали специалисты Ростеха, позволит нашей стране получить отличный технологический и научный задел на будущее. Об этом «ПолитРоссии» сообщил авиаэксперт Роман Гусаров.

Госкорпорация Ростех приступила к разработке авиационного двигателя, работающего на водороде. О старте этой программы объявил в рамках Международного авиационно-космического салона (МАКС-2021) генеральный конструктор Объединенной двигателестроительной корпорации Юрий Шмотин. По его словам, на данный момент уже собрана рабочая группа проекта и начаты опытно-конструкторские работы.

Шмотин также отметил что сейчас конструкторы рассматривают две основные технологии: непосредственное сжигание водородного топлива в модифицированных газовых турбинах и электрохимическое преобразование топлива в электрическую энергию с использованием топливных элементов. При этом, по его словам, для снижения углеродного следа в авиации и нефтегазовой отрасли применение водородного топлива является одним из наиболее перспективных направлений.

Как отметил в беседе с корреспондентом «ПолитРоссии» главный редактор портала Avia.ru, эксперт комитета по транспорту Госдумы РФ Роман Гусаров, сам факт разработки подобного двигателя является большим событием для нашей страны. Как минимум хотя бы по причине того, что речь идет о действительно сложном и интересном в техническом исполнении механизме. В то же время надо понимать, что пока о каком-либо успехе этих начинаний рассуждать еще рано, равно как и преждевременно будет гадать, какой именно самолет получит водородный двигатель.

«Если говорить, для каких самолетов разрабатывается такой двигатель, то судить об этом пока еще рано. Все будет зависеть от того, какого класса это будет двигатель, какой тягой он будет обладать и какими габаритами. Только получив ответы на эти вопросы, мы сможем понять, куда его можно будет применить. Пока же мы можем говорить о разработке, некоем научном поиске», – отмечает эксперт.

По его словам, использование водорода в качестве энергоносителя позволит как существенно сократить потребление ископаемых углеводородных топлив, так и значительно продвинуться в решении экологической проблемы загрязнения атмосферы. Помимо этого, нельзя не принимать во внимание и рост цен на энергоносители, которые и вынуждают разработчиков обратить свой взор на другие виды топлива.

При этом чисто технологически задача полета на водородном топливе была решена еще в 80-е годы прошлого века. В Советском Союзе был экспериментальный самолет Ту-155. Работы по его созданию начались еще в 1970-е годы. Тогда в мировой энергетике назревал кризис – газовое топливо стало цениться дороже, чем нефтяное, в результате чего потребление нефти продолжало снижаться. Именно тогда советские инженеры и решили использовать в качестве авиационного топлива жидкий водород – почти идеальное экологически чистое топливо выделяет при сгорании в основном воду и незначительное количество окислов азота. А по теплотворной способности водород и вовсе втрое превосходит традиционный авиационный керосин. Но в то же время водород взрывоопасен, хранить и транспортировать его можно только в жидком состоянии при очень низких температурах, близких к абсолютному нулю. И это представляет собой серьезную проблему.

«Эта технология при всех плюсах проявила и определенного рода неготовность внедрения водородного топлива на тот момент. Потому что это и банально большая выработка водорода, и транспортировка, и хранение. Ему нужны были специальные условия, специальные баки и так далее. То есть с экономической точки зрения это было нецелесообразно. На сегодняшний день, понятное дело, тоже эти задачи до конца не решены. Но, как говорится, дорогу осилит идущий, и иметь технологический научный задел и идти в ногу со временем, конечно же, всегда хорошо. Поэтому Ростех вполне обоснованно ведет разработки в этом направлении», – уверен Роман Гусаров.

Безусловно, пока еще о готовом образце говорить рано. И даже в Ростехе пока не спешат называть хотя бы примерные сроки появления нового двигателя. В то же время нельзя не вспомнить, как ранее глава Минпромторга Денис Мантуров неоднократно заявлял, что именно водород станет главным топливом едва ли не для всех видов транспорта. И новая разработка Ростеха позволит России идти в ногу со временем в этом вопросе.

«В любом случае, никаких ограничений нет. Такой двигатель может быть создан как для большого самолета, так и для малого. Например, это может быть небольшой бизнес-джет, что позволит быстрее окупить все затраты на него. А может быть и большой пассажирский лайнер, которым и был Ту-155. Здесь все чисто технические вопросы, в общем-то, давно уже решены. И понятно, что сейчас эти двигатели будут существенно отличаться от того, что мы видели в прошлом веке. Сейчас на дворе XXI век, а это значит, что нам доступен другой технологический уровень, другие возможности и другие технически и экономически обоснованные решения», – резюмирует Роман Гусаров.

Ранее «ПолитРоссия» рассказывала своим читателям о том, что Военно-­кос­ми­чес­кая академия имени А. Ф. Можайского и Санкт-Петер­бург­ский политехнический университет Петра Великого создали творческий коллектив, который будет заниматься разработкой ионного электрического ракетного двигателя нового поколения.

Читать еще:  Двигатель dohc что это плюсы и минусы

Альтернатива

Внедрение водородного топлива — перспективное направление и для России, и для всего мира: оно является более технологичным и экологичным. Популяризация подобных технологий связана с рядом существенных ограничений — высокой ценой топлива, необходимостью новых технологических решений для его хранения и транспортировки, а также с развитием инфраструктуры для обслуживания автомобилей. Эксперты отмечают, что экономическая выгода водородного топлива по сравнению с остальными пока неочевидна.

В начале ноября Смольный сообщил, что в Петербурге может появиться каршеринг на водородном топливе. Соответствующий проект рассматривается городом, Минпромторгом РФ и компанией Hyundai. По словам вице-губернатора Петербурга Евгения Елина, городское правительство намерено «забежать вперед и посмотреть, как это будет работать», организовав эксплуатацию таких автомобилей. Впрочем, конкретных сроков названо не было, равно как и подробностей запуска данного проекта, касающихся потенциального оператора каршеринга и количества таких машин.

Как пояснили BG в Минпромторге РФ, речь идет о развитии нового для нашей страны направления — использования, а в будущем и создания транспорта, работающего на водородном топливе. При этом «Каршеринг на водородном топливе» может стать одним из пилотных проектов, реализуемых в мегаполисах. В ведомстве также отметили, что поставщиками водородного топлива могут стать «Газпром» и «Росатом».

Для начала стоит разделить два направления использования водорода в качестве топлива. «Первый — это применение его в качестве именно топлива для двигателей внутреннего сгорания. Этот вариант старше, чем использование бензина или дизельного топлива, причем почти на век. Прообраз такого двигателя появился еще в 1806 году»,— говорят эксперты «Авито Авто». С двигателями подобного типа создавали легковые модели Mazda (причем в этом случае двигатель роторный и двухтопливный), BMW (тоже двухтопливная схема), Audi, Ford, Hyundai, Toyota, Honda — и это далеко не полный список. В настоящее время в этом направлении (но не единственном и не наиболее приоритетном) работает и производитель грузовиков и автобусов MAN. Кроме того, имели место и российские, и даже еще советские разработки, отмечают эксперты. «Одним словом, это просто одна из ветвей развития современных двигателей. Как для легковой, так и для грузовой техники, для железнодорожных локомотивов и даже для авиации»,— заключают они.

Второе направление — относительно новое и считающееся одним из наиболее перспективных — это водородные топливные элементы, то есть системы, позволяющие использовать водород во взаимодействии с кислородом (без процесса горения) для генерации электроэнергии непосредственно на борту автомобиля. «В автомобиле с водородным двигателем, как правило, есть два бака — с водородом и воздухом, при смешивании которых выделяется электричество. Его можно использовать непосредственно для питания электродвигателя»,— рассказывает Роман Абрамов, исполнительный директор «СберАвто», добавляя, что это прекрасная на первый взгляд технология, не требующая масла, поршней, двигательных элементов, не наносящая вред окружающей среде. «Водородные топливные элементы действительно достаточно перспективны. Подобные разработки — как экспериментальные, так и серийные — также имеют многие производители, среди них Toyota, Hyundai, Mercedes, Opel, Honda, Volkswagen»,— добавляют эксперты «Авито Авто». Пионером в этой области можно назвать компанию Toyota, которая несколько лет назад представила автомобиль Toyota Mirai. «Это не концепт, а работающий продукт, который можно увидеть на улицах Японии и, думаю, в других развитых азиатских стран»,— говорит господин Абрамов. Кроме того, BMW совместно с Toyota ведет разработки для своих авто, развивают это направление Honda и Hyundai. «Какие-то попытки совершают многие производители, у Lada была «Нива» на водородном топливе. Тем не менее пока у всех, кроме Toyota, это остается на уровне экзотики и прототипов»,— указывает он.

Некоторые эксперты автоиндустрии считают, что водородный двигатель применим в первую очередь в транспортных средствах, предназначенных для коммерческого использования (например, машины такси, грузовые автомобили). В частности, такой позиции придерживается глава концерна Volkswagen Герберт Дис. «VW сделал выбор в пользу производства электромобилей, и, как отмечал Герберт Дис, одна из причин — в том, что водородный двигатель обладает большим потенциалом для использования в грузовом транспорте, чем для оснащения персональных легковых автомобилей. Одна из возможных причин такой позиции — то, что машина на водородном топливе в производстве дороже, чем авто с электрическим двигателем»,— объясняют в «Авито Авто».

Преимущества и недостатки

Необходимость перехода на водородное топливо обусловлено и климатическими, и экологическими требованиями. «В 2019 году наша страна подписала Парижскую конвенцию по климату, которая предусматривает разработку технических решений по переходу на экологические виды топлива, так называемое «зеленое» топливо. Россия имеет высокий потенциал для производства экологически чистого водорода. К 2030 году стоимость водорода станет сопоставима со стоимостью традиционных источников энергии, но в настоящее время использование «зеленого» топлива до конечного потребителя затруднительно, в том числе с финансовой точки зрения»,— замечает ректор БГТУ «Военмех» им. Устинова Константин Иванов. При этом, по его словам, переход транспортной системы Петербурга на «зеленое» топливо потребует колоссальных инвестиций и глобальных инфраструктурных решений.

Читать еще:  Двигатель в разборе лучше

Водородное топливо — гораздо более технологичный и экологичный вид топлива, оно обеспечивает бесшумную работу, малый расход, а также полную экологичность по причине выбросов водяного пара. Такие автомобили можно очень быстро заправлять — едва ли не быстрее, чем бензиновые или дизельные, что является существенным плюсом на фоне длительной зарядки аккумуляторов. Кроме того, автомобили на топливных элементах имеют лучший запас хода.

Среди недостатков эксперты отмечают сложность и дороговизну получения водорода как топлива: в случае получения его из природных газов не снижаются углеродные эмиссии, а в случае электролиза — необходимо большое количество редкоземельных и драгоценных металлов для установки. «Однако как показало время, если развивать любую технологию, можно достичь снижения стоимости, как это было с литий-ионными батареями, стоившими сначала целое состояние»,— говорит Александр Багрецов, руководитель проектов направления «Оценка и финансовый консалтинг» группы компаний SRG.

По словам директора по административно-хозяйственной деятельности ООО «Байкал-Сервис ТК» Александра Разина, для использования водорода в качестве топлива потребуются не только энергоресурсы для его производства, но и развитая инфраструктура хранения и транспортировки — трубопроводы, железнодорожные цистерны, морские танкеры, автозаправки. «Как известно из химии, водород очень летуч и взрывоопасен. Хранение, транспортировка или использование водорода потребуют наличия высокочувствительных газоанализаторов, сверхпрочных материалов. К примеру, существующая технология водородно-воздушных топливных элементов, которая уже используется на автомобилях Honda, Toyota, Hyundai, пока не показала свою безоговорочную эффективность, так как оборудование довольно тяжелое и габаритное, а вероятность утечки чрезвычайно летучего газа снижает безопасность и требует высочайшего уровня технологий, что, безусловно, влияет на экономику проекта»,— рассуждает господин Разин.

К другим недостаткам можно отнести высокую стоимость машин, которые по своему устройству существенно сложнее бензиновых или электрических, добавляет Дмитрий Мешков, исполнительный директор ООО «Соллерс Инжиниринг». По его словам, в обозримом будущем можно говорить лишь о реализации локальных проектов, таких как создание пассажирского транспорта на водородном топливе для крупных и богатых городов. «Однако и тут не все просто, поскольку у таких автомобилей нет очевидных преимуществ перед электрическими»,— добавляет он.

По словам вице-президента Независимого топливного союза Дмитрия Гусева, практика показывает, что рост транспорта с альтернативными двигателями возможен только при создании достаточной инфраструктуры. А на стартовом этапе развитие инфраструктуры — это долгосрочные инвестиции. «Поэтому первым шагом для развития водородных двигателей будет создание сетей водородных заправок, о чем пока даже упоминания нет в «Энергостратегии-2035″»,— поясняет господин Гусев, предполагая, что в ближайшие пятнадцать лет, если не будет существенных изменений, автомобилей и заправок на водороде не планируется.

Ученый из Сколково: Водородные двигатели не так хороши, как кажется

От массового использования водородный двигателей предостерегает инженер Сколковского института науки и технологий, гендиректор одной из компаний-резидентов Евгений Ерхан. «Водородно-топливная энергетика, по моему мнению, — это абсолютно тупиковая ветвь развития, не имеющая никакого продолжения», — заявил Ерхан в интервью ФАН. Водород, по его словам, сложно и дорого производить, а его эксплуатация крайне опасна: использование водородных двигателей в транспортных средствах, в случае попадания такого автомобиля или автобуса в аварию, чревато большим количеством жертв. «Представьте себе, что у вас в машине баллон 700 атмосфер и вы на этой машине влетаете в стену, ну или в аварию попадаете. Так вот, при ударе ваш баллон превращается в гранату, разрывая все вокруг себя, — пояснил инженер. — Если вы возьмете статистику, посмотрите, какое количество аварий в России произошло и какое количество машин загорелось, она просто ничтожно мала. Но если в автомобиле будет баллон с водородом и если он взорвется, то мало того, что 100% пострадает человек, который находится внутри машины, так еще и автомобиль превратится в шрапнель, куски гранаты, которые будут уничтожать все вокруг себя».

Ученый привел в пример случаи взрывов баллонов с бытовым газом в жилых домах, которые способны разрушить несколько квартир и даже несколько этажей друг над другом.

«Давление в газовом баллоне при этом всего 14 атмосфер, а в водородном — 700 атмосфер. Это опасная, страшная технология», — подчеркнул Ерхан.

Он также обратил внимание на то, что водород является крайне сложным в производстве газом.

«Добывать водород при помощи электролиза воды крайне неэффективно и очень дорого, это колоссальные затраты энергии. На сегодняшний день единственным эффективным способом получения водорода является сжигание метана. В итоге получается водород, и в машине или где бы вы его ни использовали, выбросов не будет. Но для того, чтобы получить этот водород, придется обязательно загрязнять атмосферу в процессе производства этого водорода», — пояснил эксперт.

Собеседник агентства подчеркнул, что еще одним аргументом против использования водорода является энергоемкость таких двигателей: она значительно меньше, чем у традиционных ДВС.

«Что бы ни делали, как бы ни танцевали, но если вы возьмете водородный самолет и керосиновый самолет, то второй будет летать дольше — это факт. Некоторые доказывают, что это несовершенная технология, что ее нужно доработать, что водородно-топливной энергетике еще только 20 лет. Но эти 20 лет прошли, и за это время не сильно-то поменялась технология. В ее основе в любом случае лежат платиновые либо палладиевые мембраны. И платина, и палладий — это колоссально дорогие элементы», — резюмировал Ерхан.

Эксперт убежден, что от использования водорода мир быстро откажется. «Мое личное мнение, что вся водородная индустрия, весь хайп вокруг этого свернется, как только появится необходимость массового производства и поставок, появятся станции заправки, когда начнутся первые взрывы баллонов. Вот тогда и начнутся запреты», — добавил эксперт.

Евгений Ерхан отметил, что выступающие за зеленую энергетику европейцы сами не спешат пересаживаться на водородомобили, водородобусы и подниматься в небо на самолетах с водородными двигателями.

Ссылка на основную публикацию
Adblock
detector