Воздушные двигатели низкого давления

Воздушные двигатели низкого давления

Воздушные двигатели низкого давления

Первый отечественный турбореактивный двухконтурный авиационный двигатель

К концу 40-х гг. прошлого столетия возможности поршневых моторов оказались полностью исчерпаны. После Второй Мировой войны практически все конструкторские двигателестроительные фирмы активно занимались разработкой авиационных газотурбинных двигателей. Пермские конструкторы вплотную приступили к их разработке в 1953 году, когда ОКБ-19 возглавил Павел Александрович Соловьев.

В пермском КБ был проведен большой объем работ по исследованию различных схем воздушно-реактивных дви­гателей, в результате чего была выбрана перспективная схема двухконтурного турбореактивного двигателя, обеспе­чивающая топливную экономичность на всех режимах работы двигателя и, особенно, на высоких дозвуковых скоростях полета. Идею двухконтурного турбореактивного двигателя в свое время предложил замечательный советский авиаконструктор А.М. Люлька

В 1956 году было начато проектирование двухкаскадного турбореактивного двухконтурного двигателя Д-20 с форсажной камерой (ТРДДФ), который предполагалось использовать на бомбардировщике А.Н. Туполева. Было изготовлено пять опытных двигателей, однако, проект самолета был закрыт

В 1960 году под руководством Павла Соловьева на базе ТРДДФ Д-20 соз­дается первый серийный двухконтурный турбореактивный двухвальный двигатель Д-20П (П – пассажирский). Его успешные государствен­ные испытания утвердили двухконтурную схему как основ­ную в отечественном авиадвигателестроении.

Непросто шло освоение Д-20П на серийном заводе имени Я. М. Свердлова (ныне «ОДК-ПМ»). Даже квалифи­цированные сборщики не сразу смогли уловить все техни­ческие особенности нового двигателя. Было необходимо быстро решать возникающие вопросы по изготовлению и испытанию изделий. Для этой цели в 1961 году была создана первая ведущая бригада по серийному сопровождению двигателя Д-20П. С ее помощью были устранены такие дефекты, как вибрация двигателя, искрение при задевании лабиринтов сопловых аппаратов о диски турбины, резонансные колеба­ния рабочих лопаток первой ступени компрессора низкого давления и др.

Двигатель Д-20П стал первым отечественным серийным двухконтурным двухвальным двигателем. Всего было изготовлено 1795 двигателей Д-20П

Двигатель Д-20П тягой 5 400 кгс широко использовался в составе силовой установки первого отечественного ближ­немагистрального реактивного пассажирского самолета Ту-124 разработки конструкторского бюро Андрея Туполева.

В 1961 году на базе Д-20П разработан турборе­активный одновальный двухконтурный двигатель Д-21 с форсажной каме­рой для всепогодного стратегического разведчика – первого в мире самолета, способного вести авиаразведку на сверхзвуке на удалении более 1 700 км от аэродрома базирования. Несмотря на то, что самолет был создан в ОКБ-256 под руководством П.В. Цыбина, он, как и двигатель, серийно не выпускался.

Турбина всему голова

В эволюционном развитии гражданской авиации настал момент для нового перелома

Michael E. Iacovella / Edelman

Существующие сегодня реактивные двигатели уже не считаются экономичными и удобными для использования и обслуживания, и несколько мировых компаний уже приступили к разработке новых типов силовых установок. Они должны стать легче, экономичнее и мощнее существующих сегодня двигателей пассажирских лайнеров.

Фактически отцом современных двигателей, устанавливаемых на транспортные и пассажирские самолеты, является советский конструктор Архип Люлька. В 1941 году он получил патент на изобретение турбореактивного двухконтурного двигателя, однако из-за Великой Отечественной войны построить прототип установки не успел. Первый двигатель такого типа в 1943 году испытали в Германии. От обычных реактивных двигателей, разработка которых началась чуть раньше, новые силовые установки отличались течением воздушных потоков по двум контурам.

Внутренний контур состоит из зоны компрессоров, камеры сгорания, турбины (газогенератор) и сопла. Во время полета воздух затягивается и немного сжимается вентилятором, самым большим винтом и самым первым по ходу полета. Затем часть этого воздуха поступает в компрессор и сжимается еще сильнее, после чего попадает в камеру сгорания, где смешивается с топливом. После сгорания горючего раскаленные газы вырываются из камеры сгорания и вращают турбину.

Схема турбовентиляторного реактивного двигателя. Слева направо: вентилятор, компрессор низкого давления, компрессор высокого давления, вал компрессора низкого давления, вал компрессора высокого давления, камера сгорания, турбина высокого давления, турбина низкого давления, сопло.

K. Aainsqatsi / wikipedia.org

Сегодня турбореактивные двухконтурные двигатели делят на два типа: с низкой и высокой степенью двухконтурности. Степень двухконтурности — это отношение объема воздуха за момент времени проходящего через внешний контур, то есть, минуя камеру сгорания, к объему воздуха, проходящего через внутренний контур, то есть газогенератор. Двигатели со степенью двухконтурности меньше двух традиционно ставятся на боевые самолеты, поскольку имеют небольшие размеры и большую тягу. Но они же расходуют много топлива.

Если у силовой установки степень двухконтурности больше двух, его принято называть турбовентиляторным реактивным двигателем. В такой силовой установке большая часть воздуха в полете проходит по внешнему контуру. На современных двигателях от 70 до 85 процентов тяги формируется именно вентилятором, в то время как внутренний контур используется лишь для привода дополнительных агрегатов, типа генератора, а также самого вентилятора и компрессоров.

В турбовентиляторных двигателях коэффициент полезного действия зависит от величины степени двухконтурности. Но увеличение двухконтурности приводит и к увеличению размеров двигателя, его массы и аэродинамических характеристик (большой двигатель имеет большое лобовое сопротивление). В целом же турбовентиляторный двигатель не может развивать скорость выше скорости звука, но имеет небольшой расход топлива, что как раз очень важно для пассажирских и грузовых перевозок.

Турбовентиляторные двигатели в гражданской авиации используются на протяжении последних нескольких десятилетий и зарекомендовали себя как надежные, относительно дешевые и экономичные силовые установки. Эти показатели разработчики из года в год стараются снизить, применяя все новые технические решения вроде саблевидных лопаток вентилятора, позволяющих сильнее сжимать воздух в зоне входа в компрессорную часть. Но эти решения не дают существенной экономии в расходе топлива.

Американский двигатель CFM56, устанавливаемый на самолеты нескольких типов компаний Boeing и Airbus, имеет степень двухконтурности 5,5 и удельный расход топлива в крейсерском режиме 545 граммов на килограмм-силы в час. Для сравнения, двигатель АЛ-31Ф истребителей Су-27 имеет степень двухконтурности 0,57 и удельный расход топлива в крейсерском режиме в 750 граммов на килограмм-силы в час и 1900 граммов на килограмм-силы в час на форсаже. Первый CFM56 расходовал чуть больше 700 граммов топлива на килограмм-силы в час.

Турбовентиляторный реактивный двигатель на самолете Boeing 777-300

Ультравысокой, или сверхвысокой, степенью двухконтурности считается, когда объем воздуха проходящего за момент времени через внешний контур в двадцать и более раз больше объема воздуха, проходящего через внутренний контур. Так изобрели турбовинтовентиляторный реактивный двигатель. Он имеет два (иногда три) вентилятора, расположенных на одной оси и вращающихся в разные стороны. Лопатки таких вентиляторов имеют саблевидную форму, а сами роторы — изменяемый шаг.

Схема турбовинтовентиляторного реактивного двигателя с открытым винтовентилятором

Hamilton Sundstrand Corporation

Одним из примеров турбовинтовентиляторных двигателей является российский НК-93. Иногда его называют турбовинтовентиляторным реактивным двигателем с закапотированным ротором, или винтовентилятором. В нем винтовентилятор вместе с небольшим по длине внешним контуром забран в капот, специальную конструкцию, защищающую лопатки и упорядочивающую воздушный поток в полете. Такой двигатель примерно на 40 процентов экономичнее сопоставимого по мощности Д-30КП транспортного самолета Ил-76.

Сегодня разработка НК-93 приостановлена. Проект официально не закрыт, но будет ли он когда-либо завершен, не ясно. По разным данным, удельный расход топлива двигателем НК-93 в крейсерском режиме полета составил бы от 370 до 440 граммов на килограмм-силы в час. При этом до 87 процентов тяги будут формироваться именно винто-вентилятором. В третьей серии двигателей Д-30КУ-154 для Ил-76 удельный расход топлива удалось снизить до 482 граммов на килограмм-силы в час.

Читать еще:  Что такое машинный двигатель

Схема турбовинтовентиляторного реактивного двигателя с закапотированным ротором

Между тем, в 2000-х годах Запорожское машиностроительное конструкторское бюро «Прогресс» разработало двигатель Д-27. Он относится к турбовинтовентиляторным реактивным двигателям с открытым винтовентилятором. Сегодня он является единственной в мире силовой установкой такого типа, выпускаемой серийно. Д-27 используется на перспективном украинском военно-транспортном самолете Ан-70. В этом двигателе поток воздуха создаётся двумя соосными многолопастными саблевидными винтами.

Тяга двигателя Д-27 составляет 13,1 тысячи килограммов силы, а удельный расход топлива в крейсерском режиме — около 140 граммов на килограмм-силы в час. Турбовинтовентиляторные двигатели с открытым ротором могут иметь немного различную конструкцию. Как правило, в них предусмотрено использование редуктора для привода винтовентилятора турбиной. Украинский двигатель в своей конструкции редуктор использует. Этот узел позволяет выставить оптимальные обороты для турбины и оппозитно-вращающихся роторов.

В Евросоюзе в настоящее время действует многолетняя программа разработки новых технологий для гражданской авиации, которые в целом должны будут сделать пассажирские самолеты будущего экономичнее, экологичнее, тише и комфортнее. Этот проект называется Clean Sky 2. В рамках этого проекта французская компания Snecma, входящая в холдинг Safran, приступила к сборке первого опытного образца турбовинтовентиляторного двигателя с открытым ротором. Испытания силовой установки состоятся до конца 2016 года.

Новый опытный двигатель на время проверок установят на пассажирский лайнер Airbus 340 на специальном подвесе в хвостовой части фюзеляжа. Перед летными испытаниями перспективный двигатель проверят на тестовом стенде на полигоне во французском Истре. Параметры перспективной силовой установки разработчики сравнивают с распространенными CFM56. Ожидается, что выбросы углекислого газа двигателя с открытым ротором будут на 30 процентов меньше, чем у CFM56.

Для сборки опытного образца двигателя Snecma намерена использовать газогенератор турбореактивного двухконтурного двигателя с форсажной камерой M88. Такими силовыми установками оснащаются французские истребители Dassault Rafale. С вала, раскручиваемого турбиной двигателя, через редуктор будет приводиться открытый винтовентилятор с роторами диаметром около 420 сантиметров. Лопатки вентилятора будут изменять угол атаки. Частота вращения винтовентилятора составит около 800 оборотов в минуту.

Для сравнения скорость вращения вентилятора двигателя CFM56 составляет 5200 оборотов в минуту в режиме полной мощности. Двигатель с открытым вентилятором, разрабатываемый Snecma, сможет развивать тягу в 111 килоньютонов (11,3 тысячи килограммов-силы). Идея французского двигателя базируется на американском GE36, разработка которого велась в 1980-х годах, однако из-за несовершенства материалов была закрыта. В частности, общей чертой для двигателей с открытым ротором является изогнутая форма лопаток.

Дело в том, что эффективность двигателя, в общих чертах, зависит от шага винта и скорости вращения. Чем эти показатели выше, тем быстрее полетит самолет. Однако при определенной скорости вращения вала наступает момент, когда скорость обтекания воздушным потоком законцовок лопастей приближается к сверхзвуковой. Из-за этого весь винт теряет эффективность. Изогнутая форма позволяет снизить частоту вращения вала и несколько уменьшить шаг винта, не потеряв в эффективности.

Разработчики рассчитывают, что новые турбовинтовентиляторные реактивные двигатели с открытым ротором будут в целом тише современных турбовинтовых и турбовентиляторных двигателей. Этого можно достичь за счет сдвига шума в более высокочастотную область, а высокочастотный шум, как известно, существенно более сильно спадает с увеличением расстояния до наблюдателя.

С каждым годом проектирование новых авиационных двигателей становится все более сложным. Времена, когда за счет использования нового принципа сжигания топлива или введения дополнительного воздушного контура можно было существенно повысить эффективность и экономичность конструкции, прошли. Теперь конструкторам уже приходится решать множество тесно связанных друг с другом задач и искать новые материалы для производства различных деталей двигателей.

ТУРБОПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Турбопрямоточный воздушно-реактивный двигатель включает турбореактивный двигатель с форсажной камерой и реактивным соплом (ТРДФ), систему измерения температуры газа за основной камерой сгорания турбореактивного двигателя, а также расположенный соосно последнему прямоточный контур. Прямоточный контур соединен через отсечное устройство с воздухозаборником летательного аппарата, включающий диффузор, реактивное сопло и камеру сгорания. Внутренний канал форсажной камеры турбореактивного двигателя соединен с внутренней полостью камеры сгорания прямоточного контура радиальными стабилизаторами пламени V-образного профиля для подвода продуктов сгорания из форсажной камеры в канал камеры сгорания прямоточного контура. Изобретение направлено на повышение эффективности прямоточного двигателя летательного аппарата, предназначенного для полета в широком диапазоне скоростей полета от дозвуковой до Мп = 4 и выше. 5 з.п. ф-лы, 1 ил.

1. Турбопрямоточный воздушно-реактивный двигатель (ТПВРД), включающий турбореактивный двигатель с форсажной камерой и реактивным соплом (ТРДФ), систему измерения температуры газа за основной камерой сгорания ТРДФ, а также расположенный соосно ТРДФ прямоточный контур, соединенный через отсечное устройство с воздухозаборником летательного аппарата, включающий диффузор, реактивное сопло и камеру сгорания, содержащую форсунки для подачи топлива в камеру сгорания и стабилизаторы пламени, отличающийся тем, что внутренний канал форсажной камеры ТРДФ соединен с внутренней полостью камеры сгорания прямоточного контура радиальными стабилизаторами пламени V-образного профиля для подвода продуктов сгорания из форсажной камеры в канал камеры сгорания прямоточного контура. 2. ТПВРД по п. 1, отличающийся тем, что внутри радиального стабилизатора пламени расположена перфорированная труба с входными и выходными отверстиями для подвода во внутреннюю полость стабилизатора продуктов горения из внутренней полости форсажной камеры и дополнительного количества топлива. 3. ТПВРД по п. 1, отличающийся тем, что ТРДФ выполнен двухконтурного типа со смешением перед стабилизаторами пламени форсажной камеры потока воздуха, поступающего из второго контура, с поступающим через турбину газом. 4. ТПВРД по п. 1, отличающийся тем, что реактивное сопло ТРДФ расположено внутри реактивного сопла прямоточного контура соосно ему. 5. ТПВРД по п. 1, отличающийся тем, что форсажная камера ТРДФ и камера сгорания прямоточного контура снабжены перфорированными экранами для охлаждения стенок и устранения вибрационного горения. 6. ТПВРД по п. 1, отличающийся тем, что топливные форсунки камеры сгорания прямоточного контура с целью улучшения качества распыла топлива выполнены акустического типа с вихревым генератором ультразвука.

Изобретение относится к области силовых установок летательных аппаратов, предназначенных для применения в широком диапазоне высот и скоростей полета.

Известны прямоточные воздушно-реактивные двигатели (ПВРД) для летательных аппаратов, предназначенных для полетов при высоких значениях скорости (см., например, «Теория реактивных двигателей.»/Под ред. Б.С.Стечкина, ТИОП, 1958 г., стр. 399-423).

В прямоточном ВРД сжатие воздуха осуществляется за счет скоростного напора, а тепло к рабочему телу подводится в камере сгорания. При малых скоростях полета ПВРД неэффективен, однако при больших числах М полета (Мп>3,5) ПВРД имеют более благоприятные характеристики по сравнению с турбореактивным двигателем (ТРД) по удельной тяге при одинаковом количестве подведенного в камере сгорания тепла.

Недостатком ПВРД является его низкая эффективность при малых скоростях полета летательного аппарата.

Известны турбореактивные двигатели (ТРД), в том числе с применением дожигания топлива в форсажной камере (ТРДФ) (см., например, упомянутый выше источник, стр. 130-306), в которых сжатие воздуха осуществляется компрессором, приводимым во вращение расположенной за камерой сгорания газовой турбиной. Повышение коэффициента сжатия воздуха в компрессоре и увеличение температуры газа в камере сгорания повышают эффективность этого класса воздушно-реактивных двигателей, однако вследствие ограничения температуры газа перед турбиной удельная тяга ТРД по мере возрастания числа Мп снижается, и этот тип двигателей летательных аппаратов становится неэффективным на сверхзвуковых скоростях полета. Применение на турбореактивных двигателях ТРДФ форсажных камер позволяет повысить удельную тягу по сравнению с ТРД, особенно на средних значениях числа М полета, однако уже при М полета выше 2,3-2,5 и в особенности при Мп>3,0 ТРДФ уступают по эффективности ПВРД.

Читать еще:  Шум двигателя газель как дизель

Задачей, на решение которой направлено заявляемое изобретение, является создание универсальной силовой установки летательных аппаратов, работающей в широком диапазоне скоростей (от 0 до М=5) и высот (от 0 до 30000 м).

С целью устранения неэффективности ПВРД при низких значениях М полета и ТРД (ТРДФ) при высоких значениях скорости полета, для летательного аппарата, предназначенного для полета в широком диапазоне скоростей от дозвуковой до Мп=5,0, предлагается техническое решение, сочетающее оптимальные характеристики ТРДФ и ПВРД.

В качестве примера рассмотрим турбопрямоточный воздушно-реактивный двигатель (ТПВРД) на базе авиационного двухконтурного двигателя РД-1700Ф (с форсажной камерой).

За турбиной низкого давления (ТНД) двигателя РД-1700 установлен лепестковый смеситель 2 потоков первого и второго (вентиляторного) контуров. За ним располагается форсажная камера 4, содержащая топливные форсунки 5. Перед стабилизаторами пламени форсажной камеры 6 происходит смешение потока воздуха, поступающего из второго контура, с поступающим через турбину газом.

Форсажная камера 4 снабжена перфорированными экранами 7 для охлаждения стенок и устранения вибрационного горения.

Непосредственно за камерой сгорания ТРД 1 установлена система измерения температуры, включающая термопары 9 для измерения температуры поступающего к лопаткам турбины 8 газа. На выходе форсажной камеры 4 установлено сужающееся сопло 10, которое расположено внутри реактивного сопла прямоточного контура соосно ему.

Соосно с ТРДФ располагается прямоточный контур 19 с камерой сгорания 11, содержащей форсунки для подачи топлива 12 и радиальные стабилизаторы пламени 13. Камера сгорания прямоточного контура 11 снабжена перфорированными экранами 3 для охлаждения стенок и устранения вибрационного горения. Воздух к камере сгорания 11 поступает из воздухозаборника летательного аппарата 14 через отсечное устройство 15 и диффузор 16 для снижения скорости потока на входе в камеру сгорания 11.

Радиальные стабилизаторы пламени 13 выполнены V-образного профиля и соединены с внутренней полостью форсажной камеры 4 для подвода продуктов сгорания из форсажной камеры 4 внутрь камеры сгорания прямоточного контура ТПВРД 11 с целью стабилизации горения топлива в ней при относительно низкой температуре поступающего из воздухозаборника 14 воздуха.

Внутри радиального стабилизатора пламени 13 установлены перфорированные трубы 17 с входными и выходными отверстиями для подвода во внутреннюю полость стабилизатора дополнительного количества топлива и продуктов горения с целью создания переобогащенной топливо-воздушной смеси для повышения устойчивости горения подаваемого в камеру сгорания прямоточного контура 11 через форсунки 12 топлива.

Топливные форсунки 12 выполнены акустического типа с вихревым генератором ультразвука (см., например, патент РФ №2210026) для улучшения качества распыла топлива и повышения эффективности его сгорания в камере сгорания 11 прямоточного контура.

Прямоточный контур ТПВРД 19 снабжен на выходе реактивным соплом 18 с регулированием критического сечения 20 и выходной части 21 как в условиях совместной работы ТРДФ и прямоточного контура 19 на высокой скорости полета летательного аппарата, так и при работе только ТРДФ без подачи топлива в прямоточный контур 19 при относительно низких значениях скорости полета.

Предлагаемое устройство работает следующим образом.

Из воздухозаборника 14 летательного аппарата воздух поступает на вход компрессора низкого давления (вентилятора) ТРД, где осуществляется повышение его давления, после чего часть этого воздуха поступает в компрессор высокого давления для дополнительного сжатия, а затем в основную камеру сгорания, где осуществляется подогрев его путем сжигания топлива. Продукты сгорания поступают на вход турбины высокого давления 8, соединенную валопроводом с компрессором высокого давления, затем на вход турбины низкого давления (ТНД), соединенной валопроводом с вентилятором.

Выходящие из ТНД газы смешиваются в лепестковом смесителе 2 с потоком воздуха второго контура и поступают на вход форсажной камеры 4.

Установленная за камерой сгорания 1 система измерения температуры, включающая термопары 9, измеряет температуру газа. В случае превышения ее над заданным значением (соответствующим температуре газа 1460К за камерой сгорания ТРДФ перед турбиной высокого давления 8) регулятор снижает подачу топлива в камеру сгорания (что приводит к снижению частоты вращения роторов) для предотвращения перегрева лопаток турбины 8.

При достижении заданной скорости полета Мп=0,8 осуществляется запуск форсажной камеры кратковременным впрыском порции топлива в камеру сгорания (т.н. «огневая дорожка»). В форсажной камере 4 за стабилизаторами пламени происходит сжигание топлива, подаваемого через топливные форсунки 5, и продукты сгорания поступают в реактивное сопло 10, обеспечивая создание реактивной тяги.

При достижении скорости полета Мп=2,0 открывается отсечное устройство 15 и воздух из воздухозаборника 14 поступает через диффузор 16 в камеру сгорания 11 прямоточного контура 19. В камеру сгорания 11 через форсунки 12 вихревого типа поступает распыленное топливо, воспламеняющееся за стабилизаторами пламени 13, во внутреннюю полость которых поступают продукты горения с высокой температурой из форсажной камеры 4. Поступающие продукты горения для улучшения поджигающей способности за стабилизаторами пламени 13 дополнительно «обогащены» топливом.

Для оптимизации работы ТПВРД во всем диапазоне режимов полета предусматривается регулирование критического сечения 20 сопла Лаваля 18.

Таким образом, предлагаемое техническое решение обеспечивает оптимальные условия для разгона летательных аппаратов от минимального устойчивой скорости полета самолета до Мп=5 и полета летательных аппаратов по необходимой траектории. Оптимизация характеристик двигателя летательного аппарата обеспечивается благодаря тому, что при низких значениях скорости полета работает только турбореактивный двигатель, обеспечивающий оптимальные характеристики по расходу топлива, при средних значениях скорости полета, когда тяги ТРД не хватает, включается форсированный режим ТРДФ, что является оптимальным для этого диапазона скоростей, а при достижении скорости полета Мп>2 включается дополнительно прямоточный контур ТПВРД 19, при этом доля ТРДФ в создаваемой тяге заметно снижается и сводится при Мп>3 к обеспечению стабилизации горения топлива в камере сгорания 11 прямоточного контура 19 в условиях относительно низкой температуры воздуха на входе в камеру сгорания.

Разбираемся в датчиках: Датчик абсолютного давления

Как правило, в двигателях с впрыском топлива датчик абсолютного давления (ДАД в английском варианте MAP) установлен во впускном коллекторе и является одним из датчиков, используемых блоком управления двигателем (ECM) при расчёте количества топлива необходимого двигателю, путём непрерывного мониторинга информации о давлении во впускном коллекторе. Сейчас чаще вместо датчика MAP используется датчик массового расхода воздуха (MAF), однако двигатели с турбонаддувом обычно используют как датчик MAP, так и датчик MAF. Датчик MAP также играет жизненно важную роль в расчёте момента зажигания при различных нагрузках на мотор.

Какой бы датчик ни использовал ваш двигатель, ECM не сможет оптимизировать впрыск топлива без точной информации о массе воздуха от работающего датчика. А неверное соотношение воздуха и топлива вызовет проблемы с производительностью и преждевременный износ двигателя. Неисправность MAP может быть трудно диагностировать, но с помощью Delphi Technologies мы попробуем разобраться, что вызывает проблемы, на что обращать внимание и как заменить датчик, если он выходит из строя.

Читать еще:  Гольф 3 не показывает стрелка температуры двигателя

Как работает датчик абсолютного давления?

Датчик MAP обычно расположен на впускном коллекторе, либо рядом с корпусом дроссельной заслонки, либо на нём самом (на моторе с наддувом MAP можно найти на впускном тракте перед турбонаддувом). Внутри датчика давления находится герметичная камера, которая либо имеет вакуум, либо контролируемое давление, которое калибруется для двигателя. Разделяет вакуум в камере и вакуум впускного коллектора гибкая кремниевую пластину (она же «чип»)с протекающим через неё током.

MAP выполняет «двойную функцию». Во-первых, как датчика барометрического давления, при включении зажигания. Когда зажигание включено (до запуска двигателя) в двигателе нет вакуума, поэтому его сигнал на ECM сообщает атмосферное давление. Этот параметр нужно знать для определения плотности воздуха. При запуске двигателя давление во впускном коллекторе уменьшается, создаётся вакуум, который поступает на MAP. Когда вы нажимаете на педаль акселератора, давление во впускном коллекторе увеличивается, в результате чего вакуум уменьшается. Разница в давлении будет изгибать чип вверх в герметичную камеру, вызывая изменение сопротивления, которое, в свою очередь, сообщает ЭБУ нагрузку на мотор. А тот в свою очередь, управляет впрыском и зажигание согласно заложенным в него картам. Когда же педаль акселератора отпущена, давление во впускном коллекторе уменьшается, изгибая пластину обратно в состояние близкое к холостому ходу (ХХ).

ЭБУ (электронный блок управления) объединяет данные о давлении во впускном коллекторе от MAP с данными, поступающими от других датчиков таких как IAT (температуры впускного воздуха), ECT (температуры охлаждающей жидкости двигателя), частоты вращения коленчатого вала двигателя (об/мин). Сюда же добавляются данные об атмосферного давлении и все эти данные используются для расчёта плотности воздуха и точного определения массового расхода двигателя, что в свою очередь необходимо для подготовки оптимального соотношения воздух-топливо.

Почему выходят из строя датчики MAP?

Как и большинство электрических датчиков, MAP чувствительны к загрязнению. Если для подключения MAP используется шланг, то он может засориться или прохудиться, что приведёт к ошибке измерения датчика или, вообще, к невозможности этого. В некоторых случаях экстремальные вибрации от вождения могут ослабить подключения и вызвать внешние повреждения. Электрические разъёмы также могут расплавиться или треснуть от перегрева из-за непосредственной близости к двигателю. В любом из этих случаев MAP должен быть заменён.

Что нужно искать в неисправном датчике MAP?

Неисправный MAP повлияет на соотношение воздух/топливо в двигателе. Если состав смеси не верный, то возможно детонационное горение. Если детонация продолжается в течение длительного времени, то внутренние части мотора (такие как поршни, кольца) будут повреждены, и это в итоге приведёт к катастрофическому отказу. Обратите внимание на эти предупреждающие события:

  • Богатый состав: неровный холостой ход, перерасход топлива, чёрный дым, плохое ускорение и сильный запах несгоревшего топлива (особенно на ХХ);
  • Бедный состав: работа волнами, заглохание, недостаток мощности, слабое ускорение, «чихание» обратный выброс на впуск, перегрев нейтрализатора;
  • Детонация и пропуски воспламенения;
  • Лампы неисправности в системе управления двигателя (Check Engine).

Ремонт мотора — это гораздо больше хлопот, чем замена датчика, поэтому, если ваш двигатель имеет какие-либо из вышеперечисленных симптомов, проведите диагностику датчика MAP.

Распространённые коды неисправности MAP

Ниже список кодов, связанных с датчиком MAP, которые нужно искать, если загорелся индикатор проверки двигателя:

  • P0068: MAP/MAF — корреляция положения дроссельной заслонки;
  • P0069: Абсолютное давление в коллекторе — корреляция с барометрическим давлением;
  • P0105: Неисправность цепей MAP;
  • P0106: Цепи MAP/Атмосферное давление проблема диапазон/Проблема производительности;
  • P0107: Абсолютного давления в коллекторе/Атмосферное давление цепь низкое входное;
  • P0108: Цепь давления MAP высокое входное значение;
  • P0109: Цепь MAP/барометрическое давление прерывается;
  • P1106: Цепь MAP/барометрическое давление диапазон/Проблема производительности;
  • P1107: Низкое напряжение в цепи Датчика Барометрического Давления.

Примечание: иногда другие датчики или другие неисправные детали могут привести к появлению этих кодов. Даже если ваш двигатель испытывает перечисленные выше симптомы и выставляет один или несколько из перечисленных кодов OBD-II, рекомендуется проверить MAP, чтобы убедиться в его неисправности.

Как устранить неисправность датчика абсолютного давления

Перед любыми испытаниями проверьте внешний вид датчика. Начните с проверки подключений и проводки на наличие каких-либо повреждений, например, таких как расплавленные или треснувшие провода, и убедитесь, что нет ослабших соединений. Отсоедините датчик и проверьте контакты; они должны быть прямыми и чистыми, без следов коррозии или изгиба. Затем проверьте шланг (если он есть), соединяющий датчик с впускным коллектором, на наличие каких-либо признаков повреждения и на плотность соединение с датчиком. Наконец, загляните внутрь шланга, чтобы убедиться, что он не загрязнён.

Если тут всё нормально, то вы можете проверить датчик с помощью цифрового мультиметра, установленного на предел 20 В, и вакуумного насоса.

  1. При подключённом аккумуляторе и выключенном двигателе, подсоедините один щуп мультиметра к отрицательной клемме аккумулятора, а второй к положительной и проверьте напряжение аккумулятора. Оно должно быть около 12,6 Вольт.
  2. Обратитесь к руководству по техническому обслуживанию производителя, чтобы определить сигнальный вывод, заземление и 5-вольтовое питание и проверьте их.
  3. Включите зажигание, не заводя двигатель. Мультиметр должен (как правило) отображать напряжение около 5 Вольт для 5-вольтового питания, устойчивый 0 Вольт для заземляющего провода и от 4,0 до 4,5 Вольт для сигнального провода на машине без турбонаддува, или от 2,0 до 2,5 Вольт для авто с турбонаддувом. Это значения для атмосферного давления «на уровне моря». Обратитесь к заводской сервисной информации для получения точных спецификаций вашего автомобиля.
  4. Запустите двигатель, предварительно подключившись к сигнальному проводу. Мультиметр должен показать напряжение от 0,3 до 0,5 Вольт для автомобиля без турбонаддува, и от 0,2 до 0,5 Вольт на моделях с турбонаддувом (значение зависит от нагрузки на мотор).
  5. Выключите двигатель, но не выключайте зажигание.
  6. Под капотом отсоедините датчик MAP только от впускного отверстия.
  7. Подсоедините ручной вакуумный насос и замерьте текущее значение напряжение на сигнальном проводе.
  8. Подайте вакуум на датчик с помощью вакуумного насоса.
  9. Напряжение с датчика должно падать пропорционально увеличению вакуума.

Если ваше напряжение при тестировании сильно отличается от указанных значений или изменение напряжения нестабильно, то датчик давления в коллекторе неисправен и его необходимо заменить.

Как заменить неисправный датчик давления?

Замена неисправного датчика абсолютного давления в коллекторе зависит от автомобиля, поэтому, пожалуйста, обратитесь к руководству по техническому обслуживанию автопроизводителя для получения инструкций по конкретным случаям. (Как только неисправный датчик был снят, появляется возможность установить новый.)

  1. Найдите датчик MAP на впускном коллекторе, либо рядом с корпусом дроссельной заслонки.
  2. Сравните новые и старые датчики.
  3. Отсоедините электрический разъём. Примечание: не снимайте разъём силой, он может иметь стопор, который нужно разблокировать при отсоединения разъёма от датчика.
  4. Если применимо, отсоедините вакуумный шланг от датчика. Примечание: при замене датчика рекомендуется заменить вакуумный шланг на новый.
  5. Снимите все винты или болты, удерживающие датчик на месте, и снимите его.
  6. Замените датчик на новый.
  7. Если применимо, снова подсоедините вакуумный шланг.
  8. Подсоедините электрический разъём датчика.
  9. Дважды проверьте все соединения, чтобы убедиться, что все надёжно соединено.

Примечание: В зависимости от автомобиля, если был зафиксирован код неисправности, может потребоваться диагностический сканер для выключения контрольной лампы двигателя “Check Engine”.

Ссылка на основную публикацию
Adblock
detector