Время работы роторного двигателя

«Запорожец» обгоняет «Мерседес»

Можно ли обогнать на «Запорожце» или «Жигулях» — «Мерседес»? Оказывается, можно, только для этого в малолитражном автомобиле должен стоять не обычный поршневой, а инновационный роторный двигатель, предложенный Феликсом Ванкелем (Felix Wankel). Такие двигатели одно время устанавливались на советские и российские модели. И некоторые «Жигули» с двигателем Ванкеля обгоняли и сейчас обгоняют «Мерседесы».

Все изучали в школе, что автомобиль едет благодаря двигателю внутреннего сгорания. В двигателе есть цилиндры, внутрь цилиндров подается топливо, оно сгорает и толкает поршень. Поршень движется вверх и вниз. Движение каждого из поршней неравномерно и, чтобы автомобиль двигался плавно, цилиндров должно быть не менее четырех. Цилиндры соединяются с коленчатым валом, топливо в них подается попеременно. Поршневой двигатель внутреннего сгорания прекрасно зарекомендовал себя, он наиболее разработанный и надежный. Но у него есть существенные недостатки: он громоздкий, часть энергии тратится зря, так как поршни, двигаясь вверх-вниз, останавливаются, теряя энергию. Кроме того, чтобы динамично набирать скорость, поршневой двигатель должен иметь большой объем, поэтому быстрые машины дороги.

Есть ли альтернатива? Да, есть. Уже несколько десятилетий разрабатывается принципиально другой двигатель внутреннего сгорания. Его придумал немецкий инженер Феликс Ванкель (Felix Wankel). Двигатель Ванкеля называют также роторным двигателем. Вместо поршней и цилиндров двигатель Ванкеля имеет два ротора в форме треугольников с выпуклыми сторонами. Роторы непрерывно вращаются, сохраняя энергию вращения. При этом они засасывают топливную смесь, сжимают ее, смесь воспламеняется и выбрасывается наружу.

Более простая конструкция

Конструкция роторного двигателя проще поршневого, она очень изящна. Ему не нужна сложная система клапанов поршневого двигателя для впуска топливной смеси и выпуска выхлопных газов. Двигатель Ванкеля гораздо компактнее и легче, обычно у него два ротора, которые в серийных двигателях разгоняются даже до десяти тысяч оборотов в минуту. Для поршневых двигателей обычно предельная скорость вращения — шесть тысяч оборотов в минуту. Ход роторного двигателя очень плавный. И самое главное: динамичность двигателя Ванкеля. Установленный, например, на 8 или 9 модели «Жигулей», он позволяет обгонять со светофора иномарки бизнес-класса, которые дороже «Жигулей» в десять раз, а форсированный роторный двигатель оставляет позади и ведущие спортивные модели.

Устраняемые недостатки

Почему же двигатель Ванкеля не распространился повсеместно? Дело в том, что первые роторные двигатели были неэкономичными, неэкологичными и не очень надежными. И дело тут не в каких-то принципиальных изъянах конструкции, просто над совершенствованием двигателя Ванкеля ученые и инженеры работали гораздо меньше: такими же ненадежными и неэкономичными были в свое время первые поршневые двигатели. Забегая вперед, скажем, что японские инженеры из компании «Мазда» уже сейчас создали надежный серийный двигатель Ванкеля «Ренезис» для спортивных автомобилей «Мазда RX8», который удовлетворяет самым высоким экологическим требованиям стандарта «Евро-4», при этом расход топлива у них не больше, чем у спортивных моделей.

Судьба роторных двигателей в России

Интересна и поучительна судьба роторных двигателей у нас. Об этом рассказывает один из конструкторов двигателя Сергей Мясищев: «В 1974 году приказом генерального директора автомобильного завода «ВАЗ» Полякова Виктора Николаевича, светлая ему память, было создано специальное конструкторское бюро роторно-поршневых двигателей. Задача, весьма амбициозная, состояла в создании двигателя для автомобилей «ВАЗ», с последующей заменой на конвейере поршневого двигателя на роторный. Проходили командировки в Германию для изучения производства роторного двигателя, были изготовлены опытные, работоспособные образцы. Но для производства, конечно, этот двигатель был не готов. Была выпущена небольшая партия для эксплуатационных испытаний. Вы помните, что в то время автомобили были в большом дефиците. Хотя машины с роторным двигателем и раскупили, но было много рекламаций. Затем ситуация была проанализирована, найдено применение этому двигателю — место, где он мог лучше всего использоваться. Тогда эксплуатация позволила без проблем провести доводочные работы. В то время был спроектирован двигатель более мощный, чем наш — мощностью 120 лошадиных сил, использовавшийся для спецавтомобилей силовых структур, с высокими динамическими качествами».

Мощный и компактный

Главное преимущество роторного двигателя в том, что он быстро разгоняется и занимает меньший объем моторного отсека при той же мощности. «Без изменений конструкции моторного отсека в стандартную 5, 7, или 11 модель устанавливался двигатель мощностью до 140 л.с. В то же время изучался спектр применения этого двигателя, потому что первые неудачи заставили задуматься, а правильно ли мы применяем двигатель. И вот тогда была проделана большая работа, чтобы определить области применения. Были сделаны двигатели для авиации, подвесные лодочные двигатели, двигатели для амфибийных судов на динамической подушке, для экранопланов, для мотоцикла. В Ижевске был изготовлен мотоцикл, он прошел определенные испытания. Первоначально этот мотоцикл был заказан как эскортный мотоцикл для Кремля», — говорит Сергей Мясищев.

Так родилась и умерла еще одна утопия — перевести все модели «Жигулей» на двигатель Ванкеля. Однако разработчиками были достигнуты оригинальные результаты в создании роторных двигателей, а советские спецслужбы получили несколько сотен крайне быстрых специальных «Жигулей». С распадом Советского Союза разработка двигателей Ванкеля в России затормозилась. Хотя в конце 90 годов «АвтоВАЗ» выпустил небольшую партию обычных «Жигулей» с роторным двигателем.

Приятные особенности эксплуатации

Обладателем подобного редкого образца стал директор торгового дома «Три на три» Дмитрий Мнушкин: «Нужно сказать, что мы явились счастливыми обладателями автомобиля из той партии переднеприводных машин, о которых говорил Сергей Филиппович. Эксплуатация его идет с 99 года. Что можно отметить? Этот автомобиль дает уникальные ощущения при его эксплуатации. Возможности роторного двигателя позволяют иметь преимущество перед многими иностранными автомобилями, что приводит на дорогах довольно часто к курьезам. Динамика автомобиля, оснащенного таким мотором, в корне отличается от динамики серийной машины и такой прыти от нее никто не ожидает, в этом и конек. Мощность двигателя моей машины 170 л.с., при этом она разгоняется до ста километров в час порядка шести с небольшим секунд. При том что спортивная версия разгоняется до ста за 4,1 секунды. Надо отметить, что этот двигатель благодарно относится к тюнингу, дает широкие возможности в области настроек: можно получать хорошие результаты доступными средствами».

О спортивных возможностях двигателя Ванкеля рассказывает Владимир Каблуков, учредитель фирмы «Три на три»: «Существует такой вид спорта — под названием «дрэг-рейсинг»: это парные заезды на 402 метра. В разных странах, где проводятся подобные гонки, имеются разные регламенты: где-то применяется олимпийская система «на вылет», где-то — квалификация по времени. Кубок России 2005 года имел гибридную форму. До четвертьфинала была система отбора по времени, а после — олимпийская система. Наша машина легко дошла до финала. Мы взяли в трех этапах первые места, кубки, медали».

Читать еще:  Все виды неисправностей двигателей

Достижения «Мазды»

На гонках в Лимане компания «Мазда», которая продвигает двигатель Ванкеля, добилась большого преимущества. Это были круглосуточные кольцевые гонки. «После этого спортивные комиссары приняли регламент, который запрещает применять автомобили с невозвратно-поступательно двигающимися поршнями. «Мазда», можно сказать, спасла роторный двигатель от забвения, она его довела до того состояния, когда сегодня нужно переписывать часть учебников по автомобильным двигателям, где написано, что этот двигатель — бесперспективный по выполнению норм токсичности, в частности. RX8 выполняет нормы «Евро-4». Это самые высшие нормы, которые сегодня существуют. Сегодня это реальный двигатель массового производства. Инженеры «Мазды» проявили настойчивость, невзирая на общую тенденцию в мировой экономике. Эта фирма нашла в себе силы, чтобы сохранить и усовершенствовать эту тему. Они прошли большой путь и сегодня могут гордиться тем продуктом, который они выставили на рынок. Сегодня, когда рынок насыщен всевозможными автомобилями, эта фирма предлагает совершенно оригинальный двигатель, который, кроме нее, никто предложить не может. Я надеюсь, что мы тоже в ближайшее время сможем предложить нашим потребителям роторный двигатель, но в нашем исполнении, естественно, с учетом наших возможностей и технологических нюансов», — утверждает Сергей Мясищев.

История российских роторных двигателей продолжается. В настоящее время работы по созданию серийной модели двигателя Ванкеля совместно с «АвтоВАЗом» ведет компания «Интер-Волга». Роторные двигатели нового поколения российской разработки, возможно, скоро появятся на некоторых моделях ВАЗ-2110. Модернизированные двигатели планируется применять в легкомоторной авиации, а также ставить на катера и моторные лодки.

Как работает роторный двигатель.


Так как роторный двигатель — двигатель внутреннего сгорания, его работа , как и поршневого состоит из четырёх тактов. Пространство двигателя разделено на четыре части и в определённой части выполняется определённый такт. Таким образом, за один оборот ротора, двигатель проходит все 4 такта. Роторный двигатель (изначально задуман и разработан доктором Феликсом Ванкелем) иногда его ещё называют двигатель Ванкеля, или роторный двигатель Ванкеля.

Принцип работы.
Как и поршневой двигатель, роторный двигатель использует энергию, которая возникает при сгорании топливовоздушной смеси. В поршневом двигателе, давление, возникающее при сгорании топлива, толкает поршень, соединённый через шатун с коленвалом, таким образом, поступательное движение преобразуется во вращательное, необходимое для вращения колес автомобиля. В роторном двигателе сгорание происходит в камере, образованной частью корпуса и треугольным ротором. Он движется по траектории, которую можно описать с помощью спирографа. Ротор разделяет корпус на три камеры. Поскольку ротор перемещается по кругу, объём каждой из трёх камер то увеличивается, то уменьшается. При увеличении одной из камер происходит всасывание топливовоздушной смеси в двигатель, затем идёт сжатие, смесь взрывается, расширяясь, толкает ротор и, наконец, отработавшие газы, инерции ротора, выталкиваются наружу.

Давайте рассмотрим современный автомобиль с роторным двигателем.
Mazda была пионером в разработке серийных автомобилей, которые используют роторные двигатели. RX-7, который поступил в продажу в 1978 году, был самым успешным автомобилем с роторным двигателем. Но этому предшествовал ряд легковых автомобилей с роторным — двигателем, грузовиков и даже автобусов начиная с Cosmo Sport 1967 года. Mazda RX-8, новый автомобиль от Mazda, на котором стоит новый роторный двигатель — RENESIS.
Этот атмосферный двух роторный двигатель появился в 2003 году, мощность его около 250 лошадиных сил.

Части роторного двигателя.
У роторного двигателя система зажигания и система подачи топлива похожа на поршневой двигатель.

Ротор имеет три выпуклые части, каждая из которых действует как поршень. В каждой гране ротора имеется углубление, увеличивающее количество смеси, которую можно поджечь. Вершина каждой грани представляет собой металлическое лезвие, которое образует уплотнение с внутренней поверхностью камеры сгорания. Внутри ротора располагается зубчатое колесо, вырезанное в центре одной из сторон.

Корпус примерно овальной формы. Форма корпуса разработана таким образом, что три кончика ротора всегда соприкасаются со стенками корпуса, образуя три запечатанных объёма газа. В каждой части корпуса происходит только один процесс: всасывание, сжатие, сгорание, выпуск. Впускной и выпускной каналы расположены в корпусе их не закрывают клапана, как в поршневом двигателе. Выпускной канал соединён непосредственно с выхлопной трубой, а впускной с дроссельной заслонкой.

На валу эксцентрично расположены четыре лепестка, то есть смещённые относительно оси вала. Каждый ротор надевается на один из этих лепестков. Это подобие коленвала, в поршневом двигателе. Так как лепестки расположены эксцентрично, ротор, вращаясь, толкает лепестки. Во время работы роторный двигатель греется, охлаждающая жидкость циркулирует по всему корпусу, забирая тепло у двигателя.

Работа роторного двигателя.
Цикл работы роторного двигателя, состоит из четырёх тактов. Давайте рассмотрим подробнее каждый такт.

Впускной такт.
Впускной такт начинается когда кончик ротора проходит впускное отверстие. По мере вращенья, объём впускной камеры увеличивается, происходит всасывание топливовоздушной смеси. Когда следующий кончик ротора проходит впускное отверстие, смесь запечатывается и начинается такт сжатия.

Такт сжатия.
Форма статора сделана таким образом, что при дальнейшем вращении топливновоздушная смесь сжимается. К тому моменту когда смесь находится в контакте со свечами зажигания, объём камеры сгорания минимальный.

Такт горения.
У большинства роторных двигателей две свечи зажигания. Камера сгорания имеет вытянутую форму и с одной свечой смесь горит очень медленно. Давление, которое образуется при сгорании, заставляет ротор двигаться в том же направлении пока один из кончиков ротора не достигнет выпускного отверстия.

Выпускной такт.
После того как кончик ротора проходит выпускное отверстие, продукты сгорания удаляются в выхлопную систему. Статор сделан такой формы, что камера где находились выхлопные газы сжимается, выталкивая все отработавшие газы. На этом цикл заканчивается.
Таким образом, за один оборот ротора происходит один рабочий цикл.

Некоторые характеристики, которые отличают роторный двигатель от типичного поршневого.
Меньше движущихся частей.
В роторном двигателе гораздо меньше движущихся частей, чем в поршневом. Двухроторный двигатель имеет всего 3 движущиеся части: два ротора и выходной вал. Даже самый простой четырёхцилиндровый поршневой двигатель, имеет как минимум 40 движущихся частей, поршни, шатуны, распредвал, клапана, пружины клапанов, рокера, ремень ГРМ, зубчатые шестерни и коленвал. Эта минимизация движущихся частей может обеспечить более высокую надёжность. Вот почему некоторые производители самолётов, используют роторные двигатели вместо поршневых.
Все части в роторном двигателе вращаются непрерывно в одну сторону и не изменяют резко направление, как поршень в поршневом двигателе.

Проектирование роторного двигателя сложнее чем поршневого, а затраты на его производство очень высоки, потому что они не производятся массово. Как правило, роторные двигатели потребляют больше топлива, чем поршневые, это происходит из-за снижения термодинамического коэффициента за счёт удлинения камеры сгорания и низкой степени сжатия.

Читать еще:  Газ 31105 волга 406 двигатель расход бензина

Принцип работы роторного двигателя внутреннего сгорания

  • Принцип работы роторного двигателя внутреннего сгорания
  • Что такое роторный двигатель
  • Немного истории возникновения агрегата
  • Конструкция роторного двигателя
  • Принцип работы
  • Плюсы и минусы

Концепция роторного двигателя весьма интересна. Такие крупнейшие концерны, как Mazda, Citroen, Mersedes-Benz и General Motors, выпускали автомобили с роторными двигателями, однако позднее от них отказались. В этой статье мы рассмотрим принцип работы роторного ДВС, а также преимущества и недостатки этой конструкции.

  • Что такое роторный двигатель
  • Немного истории возникновения агрегата
  • Конструкция роторного двигателя
  • Принцип работы
  • Плюсы и минусы

Что такое роторный двигатель

Роторно-поршневой двигатель (РПД) — это класс тепловых двигателей, объединённых типом движения рабочего элемента, или ротора. В частном случае такого устройства можно выделить роторные двигатели внутреннего сгорания (роторные ДВС).

Такой тип двигателя не нуждается в элементах, которые преобразуют поступательные движения во вращательные. Соответственно, при работе роторного ДВС значительно меньше потерь, нежели поршневого, весь отсутствует промежуточное звено, такое как коленчатый вал.

На первый взгляд, этот агрегат отлично решает поставленную перед ним задачу и имеет более высокий КПД. Однако такая конструкция не получила большого распространения, и даже автомобильному концерну Mazda, который долго выпускал автомобили с таким типом двигателя, в частности модель RX-8, пришлось в конце концов отказаться от роторных систем.

Немного истории возникновения агрегата

Авторами роторно-поршневого ДВС являются Феликс Ванкель и Вальтер Фройде, создавшие его в 50-е годы ХХ века.

В этом тандеме Ванкель провёл исследования уплотнений вращающихся клапанов, а базовую схему и инженерную концепцию сформулировал Фройде. Сейчас роторный ДВС часто называют двигателем Ванкеля.

Впервые данная модель «сердца автомобиля» была испытана на NSU Spider, мощность мотора которого составила 57 лошадиных сил. При этом он легко разгонялся до скорости 150 км/ч. NSU Spider Первым массовым авто с роторной системой стал NSU Ro-80 — второй по счёту автомобиль во всей линейке компании. В отечественном автопроме данная модель двигателя использовалась на ВАЗ 21079, которая была служебной машиной, часто милицейской.

А самой массовой серией машин с роторным ДВС по праву считается Mazda RX (Rotor-eXperiment), которая производилась вплоть до середины 2012 года, хотя и сейчас ещё не до конца распроданы выпущенные автомобили.

Конструкция роторного двигателя

Подвижный элемент этой конструкции устанавливается на валу и соединяется с шестерёнкой, которая соединена со статором и образует так называемую «неподвижную шестерню». Диаметр статора по размерам значительно меньше диаметра ротора, вращающегося вокруг шестерни вместе с зубчатым колесом.

Ротор имеет трёхгранную форму и движется по поверхности цилиндра. В процессе движения он поочерёдно закрывает объёмы камер при помощи уплотнений, находящихся в вершинах ротора. Во время работы конструкции не требуется специального газораспределения. 1 и 2 — части впускной системы двигателя; 3 — задняя часть корпуса двигателя; 4 и 6 — цилиндры (корпус ротора); 5 — средняя часть корпуса двигателя; 7 — передняя часть корпуса двигателя; 8 — корпус дроссельной заслонки; 9 и 11 — стационарные (неподвижные) шестерни на фланцах; 10 — ротор с внутренним зубчатым венцом в сборе; 12 — эксцентриковый вал роторов; 13 — приёмный выпускной коллектор. Благодаря действию давления газа и центробежных сил пластины, которые выполняют роль уплотнителя, прижимаются к внутренней поверхности устройства, и в результате происходит герметизация камеры.

Схема в итоге оказалась куда проще и компактнее, чем поршневые устройства, в том числе за счёт отсутствия картерного пространства, шатунов и коленвала. Чаще всего при изготовлении конструкции применяется соотношение радиуса шестерни к зубчатому колесу 2:3.

Принцип работы

Роторный двигатель не производит возвратно-поступательные движения, как обычный поршневой ДВС. Принцип работы основан на вращении поршня. В работе нет точек замирания, как у поршневого устройства, то есть он работает более плавно, без импульсов.

РПД использует избыточное давление, которое возникает в процессе сгорания смеси топлива и воздуха. С помощью шатуна и коленчатого вала приводится в движение поршень. Давление возникает в камерах, которые формируются самой конструкцией цилиндра и корпусом ротора, играющего роль поршня. Траектория работы ротора похожа на линию спирографа. Когда происходит соприкосновение вершин движущего элемента и стенок самого ДВС, создаются непроницаемые камеры сгорания.

Вращающийся ротор позволяет осуществлять следующие процессы:

  • поступление воздушно-топливной смеси;
  • её сжатие;
  • воспламенение;
  • выпуск выхлопа.

При поступлении воздуха в камеру одновременно впрыскивается топливо. При вращении ротора в этой камере смесь сжимается. Вращаясь, ротор перемещает камеру со смесью к свечам зажигания, после чего происходит воспламенение топлива и расширение.

На следующем повороте смесь выходит в выхлопную трубу, и процесс повторяется. Такой процесс работы ничем не отличается от работы четырёхтактного поршневого ДВС.

Видео: как работает роторный двигатель

Плюсы и минусы

К преимуществам роторного двигателя можно отнести:

  • отсутствие пульсирующих импульсных нагрузок;
  • КПД такого двигателя составляет 40 %, в отличие от 20 % поршневого ДВС;
  • его мощность значительно выше, к тому же работает он намного тише, что позволяет использовать топливо с низким октановым числом;
  • он сделан из гораздо меньшего количества металла, а значит, более лёгкий;
  • конструкция содержит меньшее число агрегатов и узлов.

Недостатки:

  1. Герметизация камеры сгорания и впуска-выпуска.
  2. Для разработки нужны точные расчёты, ведь в при трении металл в результате нагрева расширяется. Точные расчёты позволяют сохранить компрессию и КПД.
  3. В процессе работы такой двигатель имеет склонность к перегревам, чем и уступает поршневым ДВС.
  4. Из-за конструкции самого устройства зоны нагрева распределены неравномерно, поскольку в камере сгорания температура выше, чем в камере впуска-выпуска. Следовательно, и цилиндр нагревается неравномерно. Для устранения такого дефекта конструкции необходимо в процессе производства цилиндра использовать различные материалы.
  5. Износостойкость у данного типа значительно ниже, чем у поршневых ДВС, так как роторный работает на больших оборотах.
  6. Из-за больших оборотов значительно увеличивается расход топлива и масла.
  7. Поскольку в процессе работы роторного ДВС топливо не успевает полностью сгореть, выхлопные газы являются более токсичными, нежели у поршневого.
  8. При использовании роторного двигателя нужно регулярно производить замену масла и чётко следить за выполнением этой процедуры.

Роторный двигатель хоть и не получил такого же распространения, как поршневой ДВС, однако тоже нашёл свою нишу в автомобильной промышленности.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Роторно-лопастной ДВС

Cамыми перспективными из разрабатываемых ДВС являются роторные. Роторный двигатель Ванкеля, разработанный в 1957 г., серийно выпускается в ФРГ, Японии и США. Масса и габариты двигателя Ванкеля в 2-3 раза меньше соответствующих им по мощности существующих ДВС.

Читать еще:  Электропривод двигатели курсовая работа

Еще более перспективными по сравнению с обычными ДВС (и даже с двигателями Ванкеля) являются роторно­лопастные ДВС.

Давно уже известен принцип работы роторно­лопастного двигателя. В отличие от других типов ДВС, у роторно­лопастного малое количество деталей – корпус и два ротора-лопасти. Все детали уравновешены. Места соприкосновения движущихся деталей образуются большими поверхностями, что позволяет довольно просто и надежно их уплотнять. Имеются и другие преимущества.

Однако, несмотря на это, до сих пор нет надежно работающего роторно­лопастного двигателя внутреннего сгорания. Причина – некоторые недостатки такого двигателя.

Основной недостаток – неравномерная скорость вращения роторов-лопастей. Во время рабочего хода один ротор движется, а другой должен стоять. В следующий рабочий ход, когда второй ротор движется, а первый ротор должен стоять, преобразовать энергию вращения роторов с неравномерной скоростью при механической передаче очень трудно.

Второй недостаток – необходимость синхронизировать работу роторов‑лопастей между собой. Т. е. нужен механизм или какое‑либо устройство, которое обеспечит бесперебойное схождение и расхождение лопастей. Известно много устройств механических синхронизаторов движения лопастей. Но, из‑за возникновения резких переменных нагрузок и ударов, на больших оборотах двигателя, при вспышках горючей смеси с маленькими площадями контакта на контактирующих поверхностях, очень быстро появляется усталость металла. Он начинает выкрашиваться, и детали быстро приходят в негодность, поэтому механические синхронизаторы не могут обеспечить длительную и надежную работу роторно­лопастного ДВС.

Но так ли уж необходимо синхронизировать работу роторов‑лопастей между собой? Самое главное в таком двигателе – чтобы одна лопасть во время рабочего хода могла двигаться свободно, а вторая стояла на месте. Это легко можно обеспечить любым стопором, например – храповым механизмом.

Синхронизацию лопасти обеспечат сами – лопасть, которая стояла во время рабочего хода, передвигается в конце рабочего хода лопастью, которая сжимает рабочую смесь или воздух. А лопасть, передвигающая ее, занимает положение задней стенки камеры сгорания (где и фиксируется).

Такой роторно­лопастной двигатель состоит из корпуса и одной или нескольких пар лопастей (одинаковое количество на каждом из роторов). Соответственно, столько же, сколько и пар лопастей на одном роторе, имеется устройств для зажигания рабочей смеси или впрыскивания топлива на впускных и выпускных «окнах». При этом пары лопастей на роторах и устройства зажигания или впрыскивания топлива, а также впускные и выпускные окна равномерно распределены по окружности. Имеются также датчики положения роторов и устройства, предотвращающие движение лопасти, находящейся в положении задней стенки камеры сгорания, в обратную сторону.

Роторы-лопасти посажены на один выходной вал, на котором они вращаются и которому – попеременно – то один, то другой – передают вращательное движение лопастей во время рабочего хода с помощью специального устройства, например – храпового механизма или обгонной муфты. В выходном валу имеются две системы отверстий, по одной из которых подается смазывающе-­охлаждающее вещество в полости роторов‑лопастей. А по другой – отводится это вещество, «отобравшее» тепло у роторов‑лопастей.

Устройство, которое фиксирует лопасть (находящуюся в положении задней стенки камеры сгорания) и предотвращающее ее движение в обратную сторону, совмещено с датчиком положения ротора. При этом стержень, фиксирующий лопасть, включает или выключает датчик положения ротора.

На выходном валу имеются кольца с выступами, а на роторах – впадины, в которые при необходимости входят выступы колец. Кольца вращаются вместе с валом, во время работы ДВС они отжаты от ротора пружинами. В корпусе ДВС имеются толкатели с приводами, которые в определенные моменты, при запуске ДВС, попеременно прижимают то одно, то другое кольца к роторам, обеспечивая этим вращение роторов, для того чтобы лопасти занимали положение стенок камеры сгорания. На выходном валу имеется приводное устройство, которое приводит в движение масляный насос, закрепленный в корпусе и подающий смазывающе-­охлаждающее вещество в полость выходного вала.

Между роторами, а также между роторами и корпусом установлены уплотняющие кольца. В роторах и в корпусе имеются канавки для этих колец, и в лопатках находятся канавки для уплотняющих пластин. Герметизация камер обеспечивается уплотнительными пластинами и кольцами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами.

Все это вместе позволяет обойтись всего одним валом, и соответственно, при необходимости, всего одним генератором, и – обеспечить нормальную бесперебойную работу двигателя.

Работает роторно­лопастной ДВС следующим образом. При запуске срабатывает один из приводов; стержень‑толкатель прижимает кольцо к ротору. В это время стартер вращает вал, кольцо выступами входит в пазы ротора­-лопасти и заставляет его двигаться вместе с валом, пока лопасть ротора не займет положение задней стенки камеры сгорания. После чего срабатывает датчик положения ротора и привод толкателя отключается.

После этого срабатывает привод толкателя другого ротора. Кольцо этого ротора входит в его пазы и вращает ротор, пока его лопасть не займет положение задней стенки камеры сгорания. Во время движения лопасть сжимает топливную смесь или воздух, и когда сработает фиксатор этой лопасти, – а соответственно, сработает и датчик положения этого ротора, – произойдет зажигание рабочей смеси или впрыскивание топлива. В камере сгорания сгорит топливо, и лопасть заставит ротор вращаться, толкатель упрется в паз вала и заставит его тоже вращаться.

В это же время противоположная лопасть этого ротора производит сжатие топливной смеси или воздуха, подготавливая следующий рабочий ход.

В процессе работы каждая лопасть совершает рабочий ход, когда на одну ее сторону давят рабочие газы, а другой стороной лопасть выгоняет через выхлопное окно отработавшие газы предыдущего хода.

Затем одной стороной она сжимает топливную смесь или воздух, подготавливая следующий рабочий ход, а другой стороной лопасть засасывает через впускное окно топливную смесь или воздух для последующего хода.

Потом она становится в положение задней стенки камеры сгорания, обеспечивая возможность осуществить рабочий ход лопастью другого ротора. При этом лопасть, занимающая положение задней стенки, переходит в положение передней стенки, после чего ею совершается новый рабочий ход.

Во время работы ДВС привод насоса заставляет его прокачивать смазывающе-охлаждающее вещество по системам отверстий и в вале, которое, попадая в полости роторов‑лопастей, смазывает поверхности соприкосновения роторов, и одновременно охлаждает роторы. А уплотняющие кольца предотвращают попадание смазки в рабочие полости ДВС и в то же время препятствуют проникновению горючих газов во внутренние полости двигателя. При этом уплотняющие пластины препятствуют прохождению горючих газов из камеры сгорания в другие полости.

Все это делает роторно­лопастной ДВС простым в изготовлении и надежным в работе.

При этом массо-габаритные характеристики роторнолопастного ДВС будут на порядок лучше, чем у существующих ДВС.

Ссылка на основную публикацию
Adblock
detector