Ядерный двигатель для космических кораблей что это

NASA может отправить людей на Марс при помощи ядерного двигателя. Это не опасно?

Аэрокосмическое агентство NASA хочет высадить людей на Марсе к 2035 году. Для этого ему необходимо разработать космический корабль, который сможет пролететь 55 миллионов километров. По расчетам исследователей, в лучшем случае преодоление этого пути займет 7-8 месяцев. За это время может произойти что угодно, начиная от конфликта между членами экипажа и заканчивая получением смертельной дозы космической радиации. Поэтому чем быстрее аппарат сможет доставить людей на далекую планету, тем лучше. Представители компании Ultra Safe Nuclear Technologies (USNC-Tech) предложили оснастить космический корабль ядерным двигателем. По их мнению, благодаря ему достигнуть Марса можно будет всего лишь за 3 месяца. Но насколько безопасно отправлять в космос ядерный реактор? Ведь члены экипажа корабля могут пострадать от его излучения, да и во время запуска он может попросту взорваться. Компания уже придумала, как сделать ядерный двигатель максимально безопасным.

Ядерный двигатель может ускорить полеты на Марс

Ядерный двигатель для космического корабля

По словам главы USNC-Tech Майкла Идса (Michael Eades), ядерный двигатель будет более эффективен для полетов на дальние планеты, чем химический двигатель. Как минимум, он позволит быстро преодолевать большие расстояния, сжигая меньше топлива. Использование меньшего количества топлива должно заметно снизить стоимость космических полетов. А быстрый полет сократит время воздействия космической радиации на организмы членов экипажа корабля. Люди еще ни разу не летали на далекие планеты. Но считается, что космическая радиация может вызвать лучевую болезнь, повысить риск возникновения рака в течение жизни и разрушить нервную систему человека.

К тому же, быстрый полет повышает вероятность успеха миссии:

Чем дольше люди будут находиться в полете, тем больше вероятность, что что-то пойдет не так, — объяснил Джефф Шихи, главный инженер Управления космических технологий NASA.

Как работает ядерный двигатель?

О том, как работает ядерный двигатель, вкратце рассказало издание CNN. Сперва ядерный реактор вырабатывает тепло из уранового топлива. Затем полученная тепловая энергия нагревает жидкое топливо, роль которого обычно играет жидкий водород. Топливо расширяется в газ и выбрасывается из сопла, создавая тягу. Ядерный двигатель производит вдвое большую тягу на единицу топлива, чем двигатели на основе химических процессов.

Впервые об использовании ядерных двигателей в космосе задумались в XX веке

Но чтобы использовать ядерный двигатель в космосе, нужно найти урановое топливо, которое способно выдерживать высокие температуры внутри двигателя. Компания USNC-Tech уверяет, что разработало топливо, которое может работает даже при 4400 градусах Цельсия. Оно содержит карбид кремния, который часто используется в качестве покрытия для элементов ядерного топлива в реакторах с высокими температурами.

Примерно так будет выглядеть производство ракетных двигателей USNC-Tech

Опасность ракетных двигателей

Итак, компания смогла разработать подходящее топливо. Но как защитить членов экипажа корабля от радиации? По словам Майкла Идса, хранящееся между двигателем и жилым сегментом корабля жидкое топливо должно хорошо блокировать радиоактивные частицы. При проектировании корабля важно будет сделать так, чтобы будущие колонисты Марса находились как можно дальше от реактора. И все, проблему можно считать решенной.

Ядерная двигательная установка USNC-Tech

А чтобы ядерный двигатель не навредил людям во время взлета, запуск корабля предлагается осуществлять с космоса. Корабль будет выводиться на земную орбиту обычной ракетой и только потом будет включать ядерный реактор. Если катастрофа произойдет во космосе, радиоактивные вещества будут двигаться настолько медленно, что достигнут Земли или других планет только спустя десятки тысяч лет. За это время они уже утратят свои вредные свойства.

Запуск космического корабля предлагается осуществлять вне Земли, потому что так безопаснее

Агентство NASA уже должна быть в курсе об идее компании USNC-Tech. Если она будет принята, в будущем полет на Марс будет заниматься всего лишь около 90 дней. В случае, если технология окажется безопасной и эффективной, ядерные двигатели можно будет использовать даже в сфере космического туризма. Ведь в будущем людям явно будут доступны не только путешествие вокруг земной орбиты, но и экскурсии в далекие планеты.

Если вам интересны новости науки и технологий, подпишитесь на наш Telegram-канал. Там вы найдете анонсы свежих новостей нашего сайта!

Об использовании ядерных двигателей агентство NASA размышляет уже давно. О преимуществах ядерных двигателей ранее уже рассказывалось в этой статье. Также в ней говорится о других технологиях, которые могут ускорить космические путешествия.

На Марс полетим на ядерных кораблях? Говорим с экспертом о перспективах применения ядерной энергии

Мировые лидеры в освоении космоса опять заговорили про ядерную энергию. Она может оказаться ключом к эффективному покорению ближнего космоса, колонизации Луны и высадке человека на Марс. Так считают и в России, и в США. Вопросы о ядерной энергетике в разрезе космической отрасли, а также о перспективных разработках в этом направлении мы задали кандидату физико-математических наук, доценту Института ядерной физики и технологий Национального исследовательского ядерного университета МИФИ Егору Задебе.

Ядерные ракетные двигатели долгое время работали только на бумаге — в произведениях писателей-фантастов. Хотя и в Советском Союзе, и в США в разгар космической гонки шли активные разработки в этом направлении. В СССР они воплотились в опытный двигатель РД-0410, за океаном — в проект NERVA.

Впрочем, это не единственные реализации идеи применения ядерной энергетики в космической промышленности. О них мы поговорим позже, а пока справляемся у Егора Задебы о том, в каких сферах освоения космоса использовались столь перспективные ядерные технологии.

— С самого начала освоения космоса при проектировании космических аппаратов (КА) применялись технологии и знания, приобретенные при развитии ядерной физики. В первую очередь это касается радиационной стойкости электронных компонентов КА. На поверхности Земли мы надежно защищены от частиц солнечного ветра и космических лучей атмосферой и магнитным полем планеты. Уже на низкой околоземной орбите радиационный фон на несколько порядков выше земного, и в таких условиях обычные электронные компоненты выходят из строя за секунды. Формирование элементной базы, устойчивой к радиации, было бы невозможно без технологий, созданных и совершенствуемых в рамках исследований в области ядерной физики.

Но наибольшую роль ядерные технологии сыграли, конечно же, в обеспечении космических аппаратов энергией. Речь идет о двух видах источников: «ядерных батарейках» РИТЭГ (радиоизотопный термоэлектрический генератор) и орбитальных ядерных реакторах.

В первом классе устройств в аппарат устанавливается радиоактивный источник, естественный распад изотопов является постоянным источником тепла (выделяемая тепловая мощность, как правило, не превышает 1 кВт), а термоэлектронный генератор переводит тепловую энергию в электрическую. Такие устройства отличаются, с одной стороны, простотой и надежностью (установленные на аппаратах «Вояджер» электрические генераторы на плутонии-238 функционируют уже почти 30 лет), а с другой — малыми мощностью и КПД (до 7%).

В тех случаях, когда космическому аппарату требуется высокая мощность, на них возможно разместить компактные атомные реакторы. Советский Союз достиг значительных успехов в разработке ядерных энергетических установок, ими было оснащено более 30 космических аппаратов (в США испытания в космосе прошел лишь один). При тепловой мощности около 100 кВт подобные установки обеспечивали свыше 5 кВт электрической. Перспективные ядерные установки мегаваттного класса станут полноценной заменой классическим ракетным двигателям и откроют путь к освоению Луны и Марса.

«Взрыволеты» и реальность

О том, что на химических ракетах покорение Солнечной системы будет затруднительным, было известно еще во времена Циолковского. И варианты альтернативных видов топлива предлагались давно. Когда человек приручил мирный атом, встал вопрос о том, как применить его для обеспечения движения в космосе. Были даже идеи использовать атомные бомбы: сбрасывать их с корабля, подрывать на удалении и использовать импульс плазмы через систему амортизаторов.

Читать еще:  Электро двигатель как выбрать

Такой «взрыволет» (ядерно-импульсный космический корабль) даже проходил испытания в конце 1950-х годов в США. Метр в диаметре, 105 килограммов веса — правда, обошлось без подрыва ядерных бомб. Их заменили на килограммовые шары взрывчатки C4. Получилось как минимум интересно.

Но, конечно, тестирование и тем более запуск аппарата, который потребует нескольких тысяч ядерных взрывов в пределах атмосферы Земли, даже во времена холодной войны посчитали чересчур экстравагантной затеей. Да и потенциальных эксплуатационных проблем у «взрыволета» хватало — от эрозии толкателя до влияния электромагнитных импульсов от взрывов на наземные и орбитальные установки.

От брутальной идеи выбрасывать за борт космического корабля ядерные бомбы отказались, но те объемы энергии, которые способна дать реакция расщепления ядер, продолжали будоражить умы инженеров. Так родились уже упомянутые NERVA и РД-0410. Они предполагали нагрев с помощью ядерной энергии водорода, который и создавал бы тягу в ядерных ракетных двигателях.

Вернер фон Браун, отец американской лунной программы, вполне оптимистично полагал, что три двигательные установки NERVA на одной ракете смогут доставить американских астронавтов прямиком на Марс уже в августе 1982 года. Правда, предложенный им в 1969 году план так и не был реализован. Интерес сверхдержав к космической гонке подостыл, бюджеты сократили, и в конце 1972 года разработки в области ядерной тяги в США были остановлены.

Советский РД-0410 мог стать двигателем, который доставил бы космонавтов СССР на Марс к 1994 году. Но не срослось. Испытания его реактора проводились в конце 1970-х — начале 1980-х годов на Семипалатинском полигоне (сейчас Казахстан). Разработка была свернута в середине 1980-х.

— Существует широкий список перспективных и гипотетически возможных ядерных и даже термоядерных космических установок, — продолжает рассказ Егор. — Часть из них не разрабатываются по экологическим причинам — например, двигатели, использующие в своей основе серию ядерных взрывов, или те, в которых рабочим телом при реактивном движении является само делящееся вещество. В ядерных ракетных двигателях, использующих в качестве рабочего тела водород или иной газ, приходится запасать большие его объемы, что не проходит ввиду ограничений по массе.

Наиболее перспективными являются ядерные энергодвигательные установки (ЯЭДУ), использующие реактор лишь в качестве источника электроэнергии, движение же в них обеспечивается с помощью ионных или плазменных двигателей. Основными препятствиями при разработке мощных установок такого типа являются ограничение на массу выводимых космических аппаратов, требование высочайшей надежности элементов и отсутствие теплообмена с внешней средой.

Ядерная электродвигательная установка мегаваттного класса

Если в описанных выше ядерных двигателях реактор непосредственно «крутил колеса» для движения, то в ЯЭДУ его задача сводится к выработке энергии для установки, которая будет «крутить колеса». Газ от реактора крутит турбину, турбина крутит генератор, генератор вырабатывает электричество для плазменного двигателя — так вкратце это работает. И, в отличие от прямоточного ядерного двигателя, никакой радиоактивной струи на выходе из двигателя.

— Если на Земле в качестве третьего контура ядерного реактора мы можем использовать крупные водные объекты, такие как озера или реки, а реактивные двигатели на основе атомных реакторов охлаждаются набегающим потоком воздуха, то в космосе аппарат находится в вакууме, теплоноситель охлаждается только за счет излучения. Это требует применения огромных холодильников-излучателей (ХИ), которые становятся самыми тяжелыми элементами ядерных установок.

Около 15 лет назад революцию в области разработки орбитальных энергоустановок сделали наши ученые, предложившие использование так называемого капельного ХИ. Это установка, похожая на душ, в которой жидкий теплоноситель второго контура не циркулирует в трубах, а распыляется наружу в виде капель прямо в открытое космическое пространство, там отдает тепло, затем улавливается и проходит цикл заново. В настоящее время эта технология только готовится к испытанию на орбите.

В России в 2009 году объявили о начале работ над ядерной энергодвигательной установкой мегаваттного класса силами предприятий «Роскосмоса» и «Росатома». Испытания макета в космосе должны были состояться 30 марта этого года, но пока о них ничего не слышно. С помощью этой установки Россия планирует начать освоение Солнечной системы.

В качестве теплоносителя в установке собираются применять гелий-ксеноновую смесь, турбомашинный электрогенератор для преобразования тепла в электричество уже испытан, еще в 2016 году прошла серия испытаний нового ионного электроракетного двигателя. Вот только основной разработчик установки — Исследовательский центр имени Келдыша — год назад был оштрафован за сорванные сроки. Согласно госконтракту, работы должны были завершиться еще 25 ноября 2018 года.

— Создание мегаваттной энергодвигательной установки должно стать колоссальным прорывом в освоении человечеством Солнечной системы. Предполагается создание ряда межпланетных челноков. Их энерговооруженность и запас хода позволят без дозаправки добраться до Марса и обратно всего за три месяца. Для сравнения: космическому кораблю с наиболее совершенным химическим двигателем до ближайшей к нам планеты придется лететь более года, но, что наиболее важно, при этом ему не хватит топлива, чтобы вернуться обратно!

Принципиальных препятствий для создания мегаваттной установки на сегодня нет. Наибольшие сложности остаются в создании трех важнейших узлов установки. Во-первых, это турбомеханический электрический генератор, работающий при температуре 1500 градусов и скорости вращения турбины в 60 тыс. оборотов в минуту. Подобные системы успешно функционируют на Земле, но не так просто подготовить генератор к долговременной эксплуатации без обслуживания в космосе, в условиях невесомости. Во-вторых, это система капельного охлаждения, описанная мной выше. Подобные системы никогда не применялись ранее, это наша уникальная разработка, протестировать которую в земных условиях практически невозможно. И, наконец, в-третьих, это нетривиальная задача компоновки и механизации космического аппарата, который должен умещаться под обтекателем ракеты-носителя, а на орбите раскрываться в огромную и сложную конструкцию, состоящую из множества мачт и экранов, а также обладающую всеми традиционными системами ориентации, маневрирования и телеметрии.

Нет сомнений, что в случае соблюдения всех позитивных условий мегаваттная установка будет создана.

Тепловая тяга на Западе

Если Россия пошла по пути создания ядерной энергодвигательной установки, то в США изучают привлекательность ядерной тепловой тяги. По мнению специалистов американского аэрокосмического агентства NASA, сегодняшние достижения в области материалов и разработки реакторов дают стимул для оценки перспективности этой технологии. Ведь ядерные двигатели на ракетах видели не только фантасты — сами специалисты NASA еще в 1961 году совместно с Комиссией по атомной энергии начали реализацию программы «Ядерный двигатель для ракетных транспортных средств» (NERVA).

Два года назад Дойс Митчелл, руководитель перспективного проекта ядерной тепловой тяги в Центре космических полетов имени Джорджа Маршалла, рассказывал, что ядерная двигательная установка способна в два раза сократить время на транзит между Марсом и Землей, и для миссии необязательно будет поджидать момент, когда обе планеты будут в наиболее благоприятных положениях друг относительно друга. Сокращение длительности полета уменьшит воздействие радиации и микрогравитации на пассажиров.

Читать еще:  Элементы тюнинга на ваз двигатель

К тому же, по мнению представителей департамента энергетики США, ракеты на ядерной тепловой тяге в два раза эффективнее существующих химических ракет. Удельный импульс последней, сжигающей водород и жидкий кислород, оценивают в 450 секунд, для ядерных ракет этот показатель оценочно достигает 900 секунд.

Американцы приступили к разработке космического аппарата на ядерной тяге

Управление перспективных исследовательских проектов Министерства обороны США (DARPA) приступило к реализации программы DRACO. Ранее известная как ROAR, она подразумевает разработку и испытание космического аппарата с тепловым ядерным ракетным двигателем к 2025 году. О выборе исполнителей для программы рассказывается на сайте DARPA.

Конструкторам космических аппаратов при выборе способа передвижения приходится выбирать из двух вариантов — химических и электрических ракетных двигателей. Первые обладают высокой тягой, что позволяет быстро выполнять маневры, но сравнительно низкой скоростью истечения газов рабочего тела. Это означает, что они очень быстро и неэкономично расходуют топливо. Поэтому космическому аппарату с химическими ракетными двигателями приходится брать в полет много топлива, чтобы запаса характерестической скорости (то есть максимальной скорости, которую космический аппарат сможет достичь, израсходовав все топливо) хватало для перелета к цели. Вторые обладают превосходными показателями скорости истечения рабочего тела (в профессиональной среде вместо этого используется удельный импульс, то есть отношение создаваемого двигателем импульса к секундному расходу рабочего тела), но настолько малой тягой, что космическому аппарату с электрическими ракетными двигателями на выполнение маневра требуются недели и месяцы.

Тепловые ядерные ракетные двигатели выглядят как золотая середина. Теоретически не уступая в тяге химическим ракетам, они обладают большей скоростью истечения рабочего тела, хотя и уступают по этому показателю электрическим. Ядерные ракетные двигатели позволяет гораздо эффективнее выполнять быстрые орбитальные маневры и отправлять в межпланетные перелеты намного более массивные корабли, при этом используя меньшие по массе запасы топлива.

Ядерный ракетный двигатель NERVA

Ядерный ракетный двигатель РД-0410

Проекты тепловых ядерных ракетных двигателей уже создавались и испытывались в прошлом. Это американские NERVA и советские РД-0410, которые разрабатывались в 50-х — 80-х годах. Американский проект уже на стадии готовности к применению на космических кораблях был свернут в 1972 году решением администрации президента Никсона из-за сокращения финансирования космических программ. Разработка советского двигателя продолжалась на воронежском КБХА до 1988 года, когда тяжелая финансовая обстановка перестройки и последствия аварии на Чернобыльской АЭС привели к остановке всех работ по проекту. Единственный изготовленный РД-0410 до сих пор хранится на предприятии. Однако интерес к технологии не исчез.

В марте 2019 года в США объявили о планах разработки нового ядерного ракетного двигателя под названием ROAR (Reactor On A Rocket). В следующем году программа получила дополнительное финансирование, и была переименована в DRACO (Demonstration Rocket for Agile Cislunar Operations). Интерес к ядерному ракетному двигателю проявляет американское Министерство обороны, которое намерено расширить свою деятельность за пределы околоземной орбиты.

DARPA рассказало 12 апреля о переходе проекта DRACO в стадию технического проектирования, которое продлится ближайшие 18 месяцев. За это время компания General Atomics должна разработать ядерный реактор для двигателя, а корпорации Blue Origin и Lockheed Martin — создать конкурирующие проекты демонстрационных и рабочих космических аппаратов, на которых будут использоваться новые двигатели. Победивший проект будет реализовываться на следующем этапе. Цель программы — продемонстрировать в 2025 году работоспособность теплового ядерного ракетного двигателя на космическом корабле.

Согласно техническому заданию, реактор двигателя будет работать на низкообогащенном урановом топливе с содержанием изотопа U-235 от пяти до 20 процентов. Схожее обогащение предполагается использовать и в аналогичном проекте, который разрабатывает NASA. В сравнении, топливо для легководных реакторов АЭС содержит от трех до пяти процентов изотопа U-235, а у энергетических установок, которые используются на американском флоте — до 90 процентов.

В прошлом году сообщалось, что в США стартовали работы над мобильным ядерным реактором для нужд Министерства обороны. Подробнее узнать о способах генерации электричества в космосе можно в нашем материале «Энергетика в космосе».

Ядерный двигатель для космических кораблей что это

Газофазные ядерные двигатели
для космических аппаратов

В соответствии с принятыми правительственными решениями в некоторых научных центрах и КБ уже со второй половины 50-х гг. начались разработки ядерных ракетных двигателей (ЯРД). Среди различных типов ядерных реакторов, которые предусматривались для применения в космических системах, особое место занимает высокотемпературный газофазный ядерный реактор (ГФЯР), обещавший достижение уникальных параметров.

Решение о разработке ЯРД и ядерных космических энергоустановок (ЯКЭУ) на основе ГФЯР было принято в 1963 г. руководителем НПО Энергомаш академиком В.П. Глушко, а затем утверждено постановлением ЦК КПСС и Совмина СССР. К этому времени научный коллектив НПО Энергомаш имел шестилетний опыт проектно-конструкторской и технологической разработки ЯРД с твердофазным реактором. Теоретические исследования по ГФЯР выполнялись с 1957 г. под руководством члена-корреспондента АН СССР В.М. Иевлева в НИИ тепловых процессов (ныне НИЦ имени М.В. Келдыша). На решение столь сложной (сопоставимой с проблемой управляемого термоядерного синтеза) и требующей колоссальных финансовых затрат научно-технической проблемы, какой является создание ГФЯР, в то время посягнули только две страны — СССР и США.

Ведущим подразделением в НПО Энергомаш по проблеме ГФЯР и двигательно-энергетических установок на его основе стал отдел под руководством Р.А. Глиника. Мы все, тогдашние участники начала разработок, были молоды и увлеклись заманчивыми революционными перспективами использования ГФЯР в космической технике, несмотря на огромные технические проблемы. Руководителям — Р.А. Глинику и В.М. Иевлеву было по 37 лет, а сами коллективы пополнялись специально подготовленными выпускниками МАИ, ХАИ, МВТУ, МГУ, МИФИ и МФТИ. Для успешного решения стоящих проблем к работам были привлечены многие институты (в первую очередь ракетно-космической и атомной отраслей) и ведущие вузы страны под общим научным руководством НИИ тепловых процессов. Большое внимание и поддержку оказали такие видные ученые, как академики М.Д. Миллионщиков, А.А. Бочвар, Е.П. Велихов.

Разработчики столкнулись с большим, совершенно новым кругом проблем организации рабочих процессов и обеспечения работоспособности конструкции в высокотемпературном ГФЯР. Вполне естественно, что и у нас, и у американцев ни аналогов, ни прототипов до тех пор не было. Несколько месяцев ушло только на предварительное ознакомление с сущностью вопросов, прослушивание лекций ведущих сотрудников НИИ тепловых процессов, изучение научных отчетов и литературы, консультации во многих организациях.

В период 1963-1973 гг. численность специализированного отдела НПО Энергомаш, занимавшегося разработкой реактора и двигательно-энергетической установки, составляла около 90 человек. В этот период проводились интенсивные экспериментальные и производственные работы по подготовке демонстрационных реакторных испытаний в 1975 г. Однако в 1974 г. в НПО Энергомаш началась разработка РД-170/171 — мощного ЖРД для системы «Энергия-Буран», в связи с чем исследования по ГФЯР были приостановлены, а коллектив специализированного отдела сокращен до 30 человек. В течение восьми лет финансировались лишь «бумажные» работы. За это время оказались утраченными обширные технологические, производственные и экспериментальные заделы.

Читать еще:  Электростатический ионный двигатель принцип работы

С 1982 г. производственные работы были возобновлены, около двух лет тот же коллектив конструкторов и расчетчиков восстанавливал технологию и экспериментальную базу. Но все же в конце 1989 г. финансирование, практически, полностью прекратилось. В США также не удалось довести дело до минимальных демонстрационных испытаний.

Предполагалось, что основным элементом конструкции ГФЯР будет одна или несколько рабочих камер, окруженных замедлителем-отражателем нейтронов. Ядерное горючее внутри камер должно удерживаться изолированно от стенок в плазменном состоянии в количестве, необходимом для самоподдерживающейся цепной реакции. В промежутке между зоной делящейся плазмы и стенками организуется поток рабочего тела. Нагрев рабочего тела обеспечивается лучистым теплопереносом, при этом его средняя температура на выходе рабочей камеры достигает значений порядка 104 К. Поглощение лучистой энергии рабочим телом обеспечивает одновременно и тепловую защиту стенок.

При разработке газофазного реактора основной проблемой было снижение потерь делящегося вещества, которые не должны превышать долей процента от расхода рабочего тела. Приемлемый уровень выноса ядерного горючего из камеры предполагалось обеспечить ламинаризацией потока поступающего рабочего тела, профилированием поля его начальных скоростей, наложением внешнего магнитного поля, специальным подбором состава рабочих компонентов и выбором геометрии полости. Вынос ядерного горючего компенсировался его подачей в рабочую камеру либо в жидкометаллическом виде (1500К), либо в виде пастообразной смеси порошка с NaK эвтектикой (эвтектика — расплав, находящийся в равновесии с твердыми фазами).

Космические энергетические установки проектировались по открытой и замкнутой схемам. Если рабочее тело выбрасывается через реактивное сопло наружу, то установка представляет собой ядерный ракетный двигатель открытой схемы. В качестве рабочего тела используется водород, в который для обеспечения электропроводности и поглощения лучистого теплового потока добавляются присадки в виде паров NaK и Li, а также вольфрамового порошка (при этом одновременно достигается приемлемая температура водорода у стенки камеры). Такой ЯРД имел бы чрезвычайно высокие удельные характеристики (удельный импульс порядка 2000:3000 с). Если установка спроектирована таким образом, что рабочее тело выбрасывается наружу через МГД-генератор с высоким КПД, то имеем ЯКЭУ открытой схемы.

Двигательная энергетическая установка открытой схемы (рис. 1) включает в себя однополостной реактор с кольцевым выходным каналом и газофазным твэлом (ГФТЭ) с застойной плазменной зоной ядерного горючего. Стабилизация зоны осуществляется с помощью мощного внешнего соленоида. Применение двигателя такой схемы по экологическим соображениям возможно лишь на космических аппаратах, но не на носителях, стартующих с Земли.

Для обеспечения энергией различных потребителей, в том числе соленоида и электропривода насосов, в установке предполагалось использовать комбинацию сопла и МГД-генератора. ЯРД и ЯКЭУ, помимо схемного различия, отличаются степенью использования энергии газового потока в МГД-генераторе: в первом случае преобразуется в электроэнергию не более 2 %, а во втором — 30. 40 %.

В установках замкнутой схемы (рис. 2) преобразователем энергии является МГД-генератор, а все рабочие компоненты циркулируют по контуру, не имеющему связи с внешней средой. В этом случае получаем ЯКЭУ, имеющую весьма высокий КПД (30:40 %), низкие значения удельной массы преобразователя и удельного расхода рабочего тела. Присадки, вводимые в рабочее тело, помимо всего прочего, призваны способствовать МГД-взаимодействию. Кроме газофазного реактора и МГД-генератора в конструкции непременно должны присутствовать холодильники, сепараторы и насосы. Рабочим телом является пар NaK в смеси с гелием. Выделяющееся избыточное тепло сбрасывается в космическое пространство с помощью излучателей. Вырабатываемая энергия используется для различных целей, одним из ее потребителей может быть электроракетный двигатель.

Преимуществом использования в замкнутых схемах ГФЯР, в котором вместо твердых твэлов используются газообразные, является принципиальная возможность обеспечения весьма длительного функционирования за счет соответствующей подпитки горючим взамен выводимых из контура во внешнюю среду продуктов ядерных реакций.

Существенное значение имеет и то обстоятельство, что в замкнутых схемах требование к выносу ядерного горючего из реактора вместе с рабочим телом менее строгое, чем в открытых. Это позволяет рассматривать более простую организацию процессов, допускающих большую степень смешения ядерного горючего и рабочего тела. При этом отпадает необходимость в магнитной стабилизации — плазменная зона из застойной превращается в струйную. Использование нескольких таких зон (многополостной реактор) улучшает массогабаритные характеристики ГФЯР.

Известно, что между тепловой мощностью реактора и возможностями обеспечения приемлемого температурного режима элементов конструкции существует определенная зависимость. Исследованиями было установлено, что оптимальная тепловая мощность ГФЯР открытой схемы должна быть не ниже 2 ГВт, а замкнутой — 300 МВт (при давлении в рабочей камере порядка 1000 кгс/см2).

Концептуальная разработка ядерной двигательно-энергетической установки для обеспечения марсианской экспедиции является последней по времени, вобравшей в себя весь предшествующий опыт. Установка основана на комбинированном однополостном газофазно-твердофазном реакторе трансформируемой конструкции массой 57,5 т (рис. 3). Тепловая мощность реактора 2,14 ГВт. Твердофазные тепловыделяющие сборки (ТФТС), размещенные по кольцу вокруг центральной полости реактора и снабженные приводными механизмами, обеспечивают необходимый уровень нейтронного потока и критичность при запуске, когда ядерное горючее в полости газофазного твэла отсутствует. По мере подачи и накопления в центральной полости ядерного горючего, т.е. образования плазменной зоны и формирования газофазного твэла, ТФТС из активной зоны извлекаются, а реактор превращается в ГФЯР.

Благодаря трансформируемой конструкции установка может работать в двух режимах:
— двигательном (газофазном) тягой 17 т при удельном импульсе 2000 с — на разгонных и тормозных участках траектории;
— энергетическом (твердофазном) с электрической мощностью 200 кВт для обеспечения внутренних нужд космического аппарата без расходования рабочего тела — на маршевом участке траектории.Этот режим обеспечивается замкнутым газотурбинным контуром с гелий-ксеноновой смесью в качестве рабочего тела, преобразованием тепловой энергии в электрическую с КПД 20 % и сбросом избыточного тепла через холодильник-излучатель (цикл Брайтона).

На двигательном режиме работы электроснабжение обеспечивается встроенным в сопло многополюсным МГД-генератором мощностью 25 МВт с электродами и шинами возбуждения, ориентированными по образующим сопла.

Минимизацию массогабаритных характеристик ГФЯР обеспечивают:

  • — применение в качестве ядерного горючего урана-233;
  • — максимально возможное использование в замедлителе-отражателе реактора металлического, в том числе крупнокристаллического бериллия, а в остальной части — графита;
  • — максимально возможное использование для высокотемпературных элементов конструкций рабочей камеры тугоплавких металлов улучшенного изотопного состава, а для силовых корпусов реактора — высокопрочных титановых сплавов и упрочняющих углекомпозитов;
  • — применение для сильноточных систем магнитной стабилизации, возбуждения МГД-генератора и электропривода насосов гиперпроводящего алюминия (чистотой 0,9999), допускающего при жидководородном охлаждении плотность тока 50. 100 А/мм2 при удельном сопротивлении в десятки раз ниже, чем у меди.

Понятно, что экстремальные температурные режимы работы многих элементов конструкции ГФЯР и крайне агрессивная среда (расплавленный уран, водород высокого давления, щелочные металлы) потребовали проведения глубоких материаловедческо-технологических проработок. В результате для системы подачи ядерного горючего были разработаны и внедрены в экспериментальное производство тугоплавкие сплавы на основе тантала — вольфрама — гафния, а также ниобия. Для некоторых участков стенок рабочей камеры были разработаны пористые тугоплавкие материалы как на основе вольфрама, так и молибдена, а для высокотемпературных фильтроэлементов — никеля и нихрома.

Дальнейший анализ выявил исключительную эффективность применения рассмотренного выше ЯРД для марсианского экспедиционного комплекса.

Ссылка на основную публикацию
Adblock
detector