Ядерный реактивный двигатель принцип работы

Научная работа

ЦЕЛЬ НИР и ОКР

Создание газофазного ядерного ракетного двигателя (ГФЯРД) с большим удельным импульсом (J> 3000 c.) для полетов на планеты Солнечной системы

1957 г. Начало работ по проекту по предложению В.М.Иевлева и поддержанного И.В.Курчатовым, М.В.Келдышем и С.П.Королевым.

Келдыш, Трескин, Иевлев, Курчатов, Александров.

1953 Постановление Правительства по созданию «крылатых ракет с прямоточным двигателем с использованием атомной энергии»

1955 Создание группы в НИИ-1 МАП по разработка концепции ЯРД во главе с В.М.Иевлевым (К.И.Артамонов, А.С. Коротеев, и др.), с удельным импульсом J=(850-900) сек «А» и до 2000 сек «В».

1956 Постановление Правительства по «созданию баллистической ракеты дальнего действия с атомным двигателем» ГК ракеты – С.П.Королев, ГК двигателя – В.П.Глушко, НР реактора – А.И.Лейпунский. Организация подготовки специалистов в МАИ отв. инженер Н.Н.Пономарев-Степной.

1958 Постановление Правительства по созданию ЯРД , научное руководство поручить М.В.Келдышу, И.В.Курчатову и С.П.Королеву

1958 Начало строительства на полигоне №2 МО СССР (ядерный полигон в Семипалатинске) стенда с реактором и горячей лабораторией

1964 Постановление ЦК КПСС и СМ о строительстве стартового комплекса «Байкал» на Семипалатинском полигоне испытательной базы ЯРД

1966 Создание ЯРД 11Б91 («А») научное руководство- Центр Келдыша (В.М.Иевлев), изготовление — КБХА (А.Б.Конопатов), ТВС ЯРД – ПНИТИ (И.И.Федик)

1968 Разработка ГФЯР двигателя РД-600 научное рук-во – Центр Келдыша, разработка НПО «Энергомаш», В.П.Глушко с тягой 6 МН, J=2000 сек

1968 Постановление Правительства о создании ГФЯР РД-600 и строительство стендовой базы «Байкал-2»

1970 НПО «Энергомаш», Центр Келдыша – эскизный проект космической энергоустановки с ГФЯР ЭУ-610 W=3,3 ГВт

1972 Физический пуск реактора ИВГ на комплексе «Байкал» (Н.Н.Пономарев-Степной)

1978 Энергетический пуск первого реактора ЯРД 11Б91

ВЫСОКОТЕМПЕРАТУРНЫЙ ВАРИАНТ ГФЯРД (схема «В»)
РАБОТЫ по ГФЯР В США

1955 Начало работ по по программе Ровера по ЯРД типа «А» (SCNR) в Лос-Аламосе

1960 Разработка концепции ЯРД типа «В» (GCNR ) Weinstein, Kerrebrock (MIT) и Лос-Аламос с удельным импульсом J=(600-2000) сек

1963 Создание ядерного двигателя для ракетныз приложений (NERVA) – Вестинхауз и Лос-Алсмос

1962-68 Проведение экспериментов по гидродинамике, устойчивости плазмы, теплофизики и излучения урановой плазмы, оптических свойств водорода, нейтронные расчеты критичности реактора.

1973 Прекращение работ по ЯРД

(СОГЛАШЕНИЕ СССР И США)
НОВЫЙ ЭТАП ЯРД

1985 Лос-Аламос и НАСА – исследование всех аспектов лунной миссии. Вывод: необходимо возобновление работ по «В» (снижение в 2 раза стоимости и времени полета). Оборудование и системы сохранены в Лос-Аламосе и Неваде (ЦК и Семипалатинск)

1989 Президент Буш объявил программу SEI (Space Exploration Initiative) – пилотируемый полет на Марс в 2018 (см. КП России). ЯРД рассматривается базовой системой в НАСА и Лос-Аламосе. Создана команда DOE/NASA для исследования и реализации ЯРД.

1991 Конференция по ГФЯР в Лос-Аламосе

1992 Исследования по устойчивости, нейтронам, смещению, численному моделированию, МГД

2005 Китай и Казахстан объявили приоритетными работы по ядерной энергии в космосе

Программа ГФЯР в США не была успешной по причине

«недостатка экспериментальных данных по теплофизческим свойствам веществ и вычислительных мощностей для моделирования высокотемпературной гидродинамики и турбулентности » (Из отчета МИТ, R.Patrick, Kerrebrock). Эти проблемы были решены в СССР с участием кафедры физической механики

Организация работ по крупному атомному Ракетному проекту в космосе в СССР и США выполнялась триадой Научный Центр – Университет — Исптытельный полигнон.

В США это Лос-Аламос – МИТ — Невада

В СССР это Центр Келдыша — МФТИ — Семипалатинск

Основные направления работ

Реализация рабочего процесса в газофазном ТВЭЛе . Теплофизика ядерного горючего и рабочего тела, вихревая и магнитная гидродинамика, лучистый и конвективный тепло– и массообмен, теплозащита стенок и торцов рабочей камеры и выходного канала, достижение критичности ГФЯР, обеспечение устойчивости работы ГФЯР вследствие высокой подвижности ядерного горючего.

Параметры ГФЯР

· давление – 1000 атм

· температура ядерного горючего – 40-60 тыс. К, рабочего тела — 8.10 тыс К

· расплавленный уран при температуре 1500. 2300 К

· водород высокого давления при температуре до 2800 К,

· жидкометаллические щелочные металлы до 2800 К дают образование агрессивных сред.

Литература

А.С.Коротеев, Э.Е.Сон. Развитие работ по газофазному ядерному реактору в России. AIAA-2007-0035, 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, Reno, Nevada.

Ядерный ракетный двигатель

Я́дерный раке́тный дви́гатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).

В СССР развёрнутое постановление правительства по проблеме создания ЯРД было подписано в 1958 году. Этим документом руководство работами в целом было возложено на академиков М. В. Келдыша, И. В. Курчатова и С. П. Королёва [2] [3] . К работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. ЯРД активно разрабатывались КБХА в Воронеже и испытывались в СССР (см. РД-0410) и США (см. NERVA) с середины 1950-х годов. Исследования продолжаются и в 21-м веке [4] .

Содержание

  • 1 Твердофазный ядерный ракетный двигатель
  • 2 Жидкофазные и коллоидные ядерный ракетный двигатель
  • 3 Газофазный ядерный ракетный двигатель
  • 4 Ядерный импульсный двигатель
  • 5 Другие разработки
  • 6 Ядерная электродвигательная установка
  • 7 Перспективы
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Твердофазный ядерный ракетный двигатель [ править | править код ]

В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 850—900 с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей [5] . Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР).

Жидкофазные и коллоидные ядерный ракетный двигатель [ править | править код ]

Работы по жидкофазным и коллоидным ЯРД не получили большого развития, так как эти ЯРД по своей эффективности сравнительно мало превосходят твердофазные, а по технической сложности сравнимы с газофазными (проблемы организации запуска, регулирования и выключения для жидкофазных и коллоидных ЯРД являются столь же сложными).

Газофазный ядерный ракетный двигатель [ править | править код ]

Газофазный ядерный реактивный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30—50 тыс. м/с. Перенос тепла от топлива к теплоносителю достигается в основном за счёт излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C).

Читать еще:  4д33 двигатель технические характеристики

Ядерный импульсный двигатель [ править | править код ]

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлёте корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

По проекту «Орион» проводились не только расчёты, но и натурные испытания. Лётные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем. Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок. Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповреждёнными, тонкий слой графита испарился (аблировал) с их поверхностей.

Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Интересно, что разработчики проводили предварительные расчёты постройки на базе этой технологии корабля поколений с массой до 40 млн тонн и экипажем до 20 000 человек [6] . Согласно их расчётам один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с. [7] [8] Однако приоритеты изменились, и в 1965 году проект был закрыт.

В СССР аналогичный проект разрабатывался в 1950—70-х годах [9] . Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30—40 км от поверхности Земли; затем предполагалось включать основной ядерно-импульсный двигатель. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Другие разработки [ править | править код ]

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне 25 (рядом со знаменитой Зоной 51) на полигоне Невады учёные работали над одним амбициозным проектом — полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2000 °C. В январе 1965 года были произведены испытания ядерного ракетного двигателя под кодовым названием «КИВИ» (KIWI).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе [10] .

В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю [11] [12] [13] .

Ядерная электродвигательная установка [ править | править код ]

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

Подобная программа в США (проект NERVA) была свёрнута в 1971 году, но в 2020 году американцы вновь вернулись к данной теме, заказав разработку ядерного теплового двигателя (Nuclear Thermal Propulsion, NTP) компании Gryphon Technologies, для военных космических рейдеров на атомных двигателях для патрулирования окололунного и околоземного пространства [14] , также с 2015 года идут работы по проекту Kilopower.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем (космический буксир «Нуклон»). На 2021 год ведётся отработка макета; к 2025 году планируется создать опытные образцы данной ядерной энергоустановки; заявлена плановая дата лётных испытаний космического тягача с ЯЭДУ — 2030 год.

В 2021 году Космическое агентство Великобритании заключило соглашение с компанией Rolls-Royce, в рамках которого планируется создать ядерный силовой двигатель для космических аппаратов дальнего действия [15] .

Перспективы [ править | править код ]

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца [16] [17] и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года [18] .

Ядерные двигатели — быстрый способ достичь Марса?


Концепт корабля с ядерным двигателем для быстрого перемещения по Солнечной системе.

Современные полеты на Марс — дело небыстрое: чтобы добраться до Красной планеты, потребуется от 7 до 9 месяцев. Разумеется, для большинства зондов время полета не играет никакой роли, чего не скажешь о людях: за такое время в космосе они получат ощутимую дозу радиации, будут проблемы с потерей мышечной массы, нужно будет вести с собой серьезные запасы еды, да и вообще за больше чем полгода в космосе с кораблем может случиться все что угодно.

Выход? Использовать ядерные двигатели. Они, несмотря на все научные споры, все же могут производить энергию и тягу, необходимые для быстрой доставки большого космического корабля на Марс и, при желании, за его пределы. Идея ядерных ракетных двигателей возникла в 1940-х годах и тогда дальше теорий не зашла. Однако на этот раз планы межпланетных миссий, основанные на ядерном делении и синтезе, подкрепляются новыми проектами, которые имеют гораздо больше шансов оторваться от Земли.

Важно отметить, что ядерные двигатели предназначены только для межпланетных путешествий, а не для использования в атмосфере Земли. Иными словами, все равно понадобятся старые добрые химические ракеты для вывода аппарата за пределы низкой околоземной орбиты. И только после этого можно использовать ядерную двигательную установку.

Основная задача заключалась в том, чтобы сделать такие ядерные двигатели безопасными и достаточно легкими для космического полета. Новые виды топлива и конструкции реакторов, похоже, соответствуют необходимым параметрам, поскольку НАСА в настоящее время работает с партнерами по ядерной отрасли над возможными будущими пилотируемыми космическими полетами на ядерном топливе.


Быстрые полеты на Марс возможны только раз в два года, да и длятся они больше полугода. Ядерные ракетные двигатели могут это изменить.

«Ядерная силовая установка будет выгодна, если вы хотите отправиться на Марс и вернуться обратно менее чем за два года», — говорит Джефф Шихи, главный инженер Управления космических технологий НАСА. По его словам, для реализации этой миссии «ключевой технологией, которую необходимо усовершенствовать, является топливо».

Читать еще:  Характеристика двигателя хонда интегра

В частности, топливо должно выдерживать сверхвысокие температуры и нестабильные условия в ядерном тепловом двигателе. И теперь две компании заявляют, что их топливо достаточно надежно для создания безопасного, компактного и высокопроизводительного реактора. Фактически, одна из этих компаний уже предоставила НАСА детальный концептуальный проект.

Ядерная тепловая двигательная установка использует энергию, выделяющуюся в результате ядерных реакций, для нагрева жидкого водорода примерно до 2430 °C, что приблизительно в восемь раз превышает температуру активной зоны атомных электростанций. В итоге водород очень сильно расширяется и выбрасывается из сопла с огромной скоростью, создавая тем самым реактивную тягу.

Такой двигатель может производить вдвое большую тягу на массу топлива по сравнению с химическими ракетами, позволяя кораблям с ядерными установками путешествовать дольше и быстрее. Кроме того, оказавшись в пункте назначения, будь то спутник Сатурна Титан или Плутон, ядерный реактор может переключиться с силовой установки на производство энергии, что позволит аппарату отправлять обратно высококачественные данные в течение многих лет.


Принцип работы ядерного ракетного двигателя.

Раньше, чтобы получить достаточную тягу от ядерной ракеты, требовался оружейный высокообогащенный уран. Более доступное низкообогащенное урановое топливо, используемое на коммерческих электростанциях, было бы более безопасным в использовании, но оно может стать хрупким и развалиться под воздействием высоких температур и химических воздействий со стороны чрезвычайно реактивного водорода.

Компания Ultra Safe Nuclear Corp. Technologies (USNC-Tech), базирующаяся в Сиэтле, создала урановое топливо с обогащением ниже 20%, что в разы выше, чем используемое в АЭС, но уже «не может быть использовано для гнусных целей, поэтому это значительно снижает риски нелегального распространения», — говорит технический директор компании Майкл Идс. Топливо от USNC-Tech содержит микроскопические частицы уранового топлива с керамическим покрытием, встроенные в матрицу из карбида циркония. Микрокапсулы удерживают радиоактивные побочные продукты деления внутри, позволяя при этом уйти выделившемуся в результате распада теплу.

Компания BWX Technologies из Линчбурга, штат Вирджиния, работает по контракту с НАСА и проектирует реакторы, использующие подобное керамическое композитное топливо, а также исследует альтернативную форму топлива, заключенную в металлическую матрицу. «Мы работаем над проектом нашего реактора с 2017 года», — говорит Джо Миллер, генеральный менеджер отдела передовых технологий компании.

В моделях «топливных ячеек» обеих компаний используются разные типы замедлителей. Они нужны чтобы замедлять высокоэнергетические нейтроны, образующиеся при делении, чтобы те могли поддерживать цепную реакцию, а не вызывать дальнейший лавинообразный распад с нагревом и разрушением реактора.

BWX размещает свои топливные блоки между гидридными элементами, а уникальная конструкция USNC-Tech включает в себя замедлитель из металлического бериллия. «Наше топливо выдерживает контакт с горячим водородом, не разрушается от излучений и не поглощает все нейтроны в реакторе», — говорит Идс.


Экспериментальный термоядерный двигатель, способный достигать температуры в 1 миллион градусов.

По словам Сэмюэля Коэна из Принстонской лаборатории физики плазмы, есть еще один путь к маленьким безопасным ракетам с ядерными двигателями: термоядерные реакторы. Обычный термоядерный синтез использует дейтерий и тритиевое топливо, но Коэн возглавляет группу ученых, разрабатывающих реактор, работающий благодаря синтезу между атомами дейтерия и гелием-3 в высокотемпературной плазме, в результате чего появляется очень мало нейтронов.

«Нам не нравятся нейтроны, потому что они могут изменить структуру материала, такого как сталь, на что-то типа сыра с дырками, и сделать его радиоактивным», — говорит он. По словам Коэна, концепт Принстонской лаборатории под названием Direct Fusion Drive также требует гораздо меньше топлива, чем нужно для традиционного термоядерного синтеза, и такой реактор может быть в тысячу раз меньше.

По словам Шихи из НАСА, термоядерная тяга теоретически может намного превзойти тягу, основанную на делении урана, потому что реакции термоядерного синтеза выделяют в разы больше энергии. Однако эта технология находится на ранней стадии развития и сталкивается с рядом проблем, включая создание и удержание плазмы и эффективное преобразование высвобождаемой энергии в направленную струю выхлопных газов. «Едва ли [термоядерные реакторы] будут готовы к полетам на Марс в конце 2030-х годов», — говорит он.

USNC-Tech, напротив, уже сделала небольшие прототипы ядерных реакторов на основе своего нового топлива. «Мы на пути к достижению цели НАСА — к 2027 году подготовить к запуску демонстрационную систему в половинном масштаба», — говорит Идс. Следующим шагом будет создание полномасштабной ядерной системы, которая вполне может быстро доставить астронавтов на Марс в 2035 году.

Космическая тяга: сможет ли Россия создать ядерный двигатель для ракет

В России провели испытания системы охлаждения ядерной энергодвигательной установки (ЯЭДУ) — одного из ключевых элементов космического аппарата будущего, на котором можно будет совершать межпланетные полеты. Зачем в космосе нужен ядерный двигатель, как он работает и почему «Роскосмос» считает эту разработку главным российским космическим козырем, рассказывают «Известия».

История атома

Если положить руку на сердце, то со времен Королева ракеты-носители, используемые для полетов в космос, кардинальных изменений не претерпели. Общий принцип работы — химический, основанный на сгорании топлива с окислителем, остается прежним. Меняются двигатели, система управления, виды топлива. Основа путешествий в космосе остается неизменной — реактивная тяга толкает ракету или космический аппарат вперед.

Очень часто можно услышать, что нужен серьезный прорыв, разработка, способная заменить реактивный двигатель, чтобы повысить эффективность и сделать полеты к Луне и Марсу более реалистичными. Дело в том, что в настоящее время едва ли не большая часть массы межпланетных космических аппаратов, — это топливо и окислитель. А что если отказаться от химического двигателя вообще и начать использовать энергию ядерного двигателя?

Идея создания ядерной двигательной установки не нова. В СССР развернутое постановление правительства по проблеме создания ЯРД было подписано еще в далеком 1958 году. Уже тогда были проведены исследования, показавшие, что, используя ядерный ракетный двигатель достаточной мощности, можно добраться до Плутона (еще не утратившего свой планетный статус) и обратно за шесть месяцев (два туда и четыре обратно), потратив на путешествие 75 т топлива.

Занимались в СССР разработкой ядерного ракетного двигателя, однако приближаться к реальному прототипу ученые стали только сейчас. Дело не в деньгах, тема оказалась настолько сложной, что ни одна из стран не смогла до сих пор создать работающий прототип, а в большинстве случаев всё заканчивалось планами и чертежами. В США проводились испытания двигательной установки для полета на Марс в январе 1965 года. Но дальше тестов KIWI проект NERVA по покорению Марса на ядерном двигателе не сдвинулся, да и был он значительно проще, чем нынешняя российская разработка. Китай поставил в свои планы космического развития создание ядерного двигателя поближе к 2045 году, что тоже очень и очень не скоро.

В России же новый виток работы над проектом ядерной электродвигательной установки (ЯЭДУ) мегаваттного класса для космических транспортных систем начался в 2010 году. Проект создается силами «Роскосмоса» и «Росатома» совместно, и его можно назвать одним из самых серьезных и амбициозных космических проектов последнего времени. Головным исполнителем по ЯЭДУ является Исследовательский центр им. М.В. Келдыша.

Читать еще:  Двигатель j20a какой бензин заливать

Ядерное движение

На протяжении всего времени разработки в прессу просачиваются новости о готовности то одной, то другой части будущего ядерного двигателя. При этом в целом, кроме специалистов, мало кто представляет себе, как и за счет чего он будет работать. Собственно, суть космического ядерного двигателя примерно такая же, как и на Земле. Энергия ядерной реакции используется для нагрева и работы турбогенератора-компрессора. Если говорить проще, то ядерная реакция используется для получения электричества, практически точно так же, как и на обычной атомной электростанции. А уже при помощи электричества работают электроракетные двигатели. В данной установке это ионные двигатели высокой мощности.

В ионных двигателях тяга создается путем создания реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле. Ионные двигатели есть и сейчас, они испытываются в космосе. Пока у них только одна проблема — практически все они имеют очень небольшую тягу, хоть и расходуют очень мало топлива. Для космических путешествий такие двигатели — прекрасный вариант, особенно если решить проблему получения электричества в космосе, что и сделает ядерная установка. К тому же работать ионные двигатели могут достаточно долго, максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трех лет.

Если посмотреть на схему, можно заметить, что ядерная энергия начинает свою полезную работу совсем не сразу. Сначала нагревается теплообменник, затем вырабатывается электричество, оно уже используется для создания тяги ионного двигателя. Увы, более простым и эффективным образом использовать ядерные установки для движения человечество пока не научилось.

В СССР запускались спутники с ядерной установкой в составе комплекса целеуказания «Легенда» для морской ракетоносной авиации, но это были совсем маленькие реакторы, а их работы хватало только на выработку электричества для повешенных на спутник приборов. Советские космические аппараты имели мощность установки в три киловатта, сейчас же российские специалисты работают над созданием установки с мощностью более мегаватта.

Проблемы космического масштаба

Естественно, что проблем у ядерной установки в космосе гораздо больше, чем на Земле, и самая главная из них — это охлаждение. В обычных условиях для этого используется вода, очень эффективно поглощающая тепло двигателя. В космосе же сделать это нельзя, и ядерным двигателям требуется эффективная система охлаждения — причем тепло от них нужно отводить во внешнее космическое пространство, то есть делать это можно только в виде излучения. Обычно для этого в космических кораблях используются панельные радиаторы — из металла, с циркулирующей по ним жидкостью теплоносителем. Увы, такие радиаторы, как правило, имеют большой вес и габариты, кроме того, они никак не защищены от попадания метеоритов.

В августе 2015 года на авиасалоне МАКС была показана модель капельного охлаждения ядерных энергодвигательных систем. В ней жидкость, рассеянная в виде капель, пролетает в открытом космическом пространстве, охлаждается, а затем снова собирается в установку. Только представьте себе огромный космический корабль, в центре которого гигантская душевая установка, из которой вырываются наружу миллиарды микроскопических капель воды, летят в космосе, а затем засасываются в огромный раструб космического пылесоса.

Совсем недавно стало известно, что капельная система охлаждения ядерной двигательной установки была испытана в земных условиях. При этом система охлаждения — это важнейший этап в создании установки.

Теперь дело за тем, чтобы испытать ее работоспособность в условиях невесомости и уже только после этого систему охлаждения можно будет пробовать создать в размерах, требуемых для установки. Каждое такое успешное испытание по чуть-чуть приближает российских специалистов к созданию ядерной установки. Ученые спешат изо всех сил, ведь считается, что вывод ядерного двигателя в космос сможет России помочь вернуть лидерские позиции в космосе.

Ядерная космическая эра

Допустим, это получится, и уже через несколько лет в космосе начнет свою работу ядерный двигатель. Чем это поможет, как это можно будет использовать? Для начала стоит уточнить, что в том виде, в котором ядерная двигательная установка существует сегодня, она может работать только в космическом пространстве. Взлетать с Земли и садиться в таком виде она не может никак, тут пока без традиционных химических ракет не обойтись.

А зачем в космосе? Ну слетает человечество до Марса и Луны быстро, и всё? Не совсем так. В настоящее время все проекты орбитальных заводов и фабрик, работающих на орбите Земли, стопорятся из-за отсутствия сырья для работы. Нет смысла строить что-либо в космосе до тех пор, пока не найден способ выводить на орбиту большое количество требуемого сырья, например металлической руды.

Но зачем поднимать их с Земли, если можно, наоборот, привезти из космоса. В том же поясе астероидов в Солнечной системе есть просто огромные запасы различных металлов, в том числе и драгоценных. И вот в таком случае создание ядерного буксира станет просто палочкой-выручалочкой.

Привезти на орбиту огромный платино- или золотосодержащий астероид и начать его разделывать прямо в космосе. По расчетам специалистов такая добыча с учетом объема может оказаться одной из наиболее выгодных.

А есть ли менее фантастическое применение ядерному буксиру? Например, с его помощью можно развозить по нужным орбитам спутники или привозить в нужную точку пространства космические аппараты, например на лунную орбиту. В настоящее время для этого используются разгонные блоки, например российский «Фрегат». Они дорогие, сложные и одноразовые. Ядерный буксир сможет подхватывать их на низкой околоземной орбите и доставлять куда необходимо.

Аналогично и с межпланетными путешествиями. Без быстрого способа доставлять грузы и людей на орбиту Марса шансов начать колонизацию просто нет. Ракеты-носители нынешнего поколения будут делать это очень дорого и долго. До сих пор длительность полета остается одной из самых серьезных проблем при полете к другим планетам. Выдержать месяцы полета на Марс и обратно в закрытой капсуле космического корабля — задача не из простых. Ядерный буксир сможет помочь и тут, существенно сократив это время.

Необходимо и достаточно

В настоящее время всё это выглядит фантастикой, но до тестирования прототипа, как утверждают ученые, остаются считаные годы. Главное, что требуется, это не только завершить разработку, но и сохранить в стране необходимый уровень космонавтики. Даже при падении финансирования должны продолжать взлетать ракеты, строиться космические аппараты, работать ценнейшие специалисты.

Иначе один атомный двигатель без соответствующей инфраструктуры делу не поможет, для максимальной эффективности разработку будет очень важно не просто продать, но использовать самостоятельно, показав все возможности нового космического транспортного средства.

Пока же всем жителям страны, не завязанным на работе, остается только посматривать на небо и надеяться, что у российской космонавтики всё получится. И ядерный буксир, и сохранение нынешних возможностей. В другие исходы и верить не хочется.

Ссылка на основную публикацию
Adblock
detector